Microglia, the brain's resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas.
View Article and Find Full Text PDFThe role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory.
View Article and Find Full Text PDFBackground: Chronic neuroinflammation and calcium (Ca(+2)) dysregulation are both components of Alzheimer's disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca(+2) homeostasis via L-type voltage-dependent Ca(+2) channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca(+2) dysregulation.
View Article and Find Full Text PDFNeuroinflammation and degeneration of catecholaminergic brainstem nuclei occur early in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Neuroinflammation increases levels of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal calcium (Ca(+2)) homoeostasis via L-type voltage dependent calcium channels (L-VDCCs) and ryanodine receptors (RyRs). Alterations in Ca(+2) channel activity in the SN and LC can lead to disruption of normal pacemaking activity in these areas, contributing to behavioral deficits.
View Article and Find Full Text PDFThe pro-inflammatory cytokine IL-1β is known to play a role in several models of aging, neuroinflammation, and neurodegenerative diseases. Here, we document a detailed time- and age-dependent pattern of pro- and anti-inflammatory biomarkers following bilateral intrahippocampal injection of interleukin-1β. During the first 12h several pro- and anti-inflammatory cytokines increased in the aged (24 mo old) rats, some of which returned to baseline levels by 24h post-injection while others remained elevated for 72 h post-injection.
View Article and Find Full Text PDFNeuroinflammation and degeneration of ascending catecholaminergic systems occur early in the neurodegenerative process. Age and the duration of a pro-inflammatory environment induced by continuous intraventricular lipopolysaccharide (LPS) differentially affect the expression profile of pro- and anti-inflammatory genes and proteins as well as the number of activated microglia (express major histocompatibility complex II; MHC II) and the integrity and density of ascending catecholaminergic neural systems originating from the locus coeruleus (LC) and substantia nigra pars compacta (SNpc) in rats. LPS infusion increased gene expression and/or protein levels for both pro- and anti-inflammatory biomarkers.
View Article and Find Full Text PDF