Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves.
View Article and Find Full Text PDFDefining the rules governing synaptic connectivity is key to formulating theories of neural circuit function. Interneurons can be connected by both electrical and chemical synapses, but the organization and interaction of these two complementary microcircuits is unknown. By recording from multiple molecular layer interneurons in the cerebellar cortex, we reveal specific, nonrandom connectivity patterns in both GABAergic chemical and electrical interneuron networks.
View Article and Find Full Text PDFIn a theoretical study in this issue of Neuron,Gidon and Segev (2012) identify several new principles governing how inhibition interacts with excitation in active dendrites. They show that inhibitory synapses can interact with excitability at a distance, effectively "throwing their voices" in the dendritic tree, such that distributed inhibitory synapses can act synergistically to provide a global veto of dendritic excitability.
View Article and Find Full Text PDF