Disentangling the molecular underpinnings of major depressive disorder (MDD) is necessary for identifying new treatment and prevention targets. The functional impact of depression-related transcriptomic changes on the brain remains relatively unexplored. We recently developed a novel transcriptome-based polygenic risk score (tPRS) composed of genes transcriptionally altered in MDD.
View Article and Find Full Text PDFOsteoporosis is a disease that is characterised by reduced bone mineral density (BMD) and can be exacerbated by the excessive bone resorption of osteoclasts (OCs). Bioinformatic methods, including functional enrichment and network analysis, can provide information about the underlying molecular mechanisms that participate in the progression of osteoporosis. In this study, we harvested human OC-like cells differentiated in culture and their precursor peripheral blood mononuclear cells (PBMCs) and characterised the transcriptome of the two cell types using RNA-sequencing in order to identify differentially expressed genes.
View Article and Find Full Text PDFSiglec-15, a Siglec family member and type-1 transmembrane protein, is expressed mainly in human macrophages and dendritic cells. It is comprised of a lysine-containing transmembrane domain, two extracellular immunoglobulin (Ig)-like domains and a short cytoplasmic domain. Siglec-15 is highly conserved in vertebrates and acts as an immunoreceptor.
View Article and Find Full Text PDFRestless genital syndrome (RGS) is a newly recognized syndrome characterized by difficult to describe genital sensations, including itching, tingling, contractions, and even pain. It can be a source of distress for the patient and may lead to social withdrawal and delayed diagnosis. Many pharmacologic and non-pharmacologic treatment options have been documented in the literature.
View Article and Find Full Text PDF