Publications by authors named "Sarah R de Annunzio"

Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress.

View Article and Find Full Text PDF

Silver tungstate (α-AgWO), silver molybdate (β-AgMoO), and silver vanadate (α-AgVO) microcrystals have shown interesting antimicrobial properties. However, their biocompatibility is not yet fully understood. Cytotoxicity and the inflammatory response of silver-containing microcrystals were analyzed in THP-1 and THP-1 differentiated as macrophage-like cells, with the alamarBlue™ assay, flow cytometry, confocal microscopy, and ELISA.

View Article and Find Full Text PDF

The synergic effect of and increases dental caries severity. Antimicrobial photodynamic therapy (aPDT) is a non-invasive treatment for antimicrobial aspects. However, the current photosensitizers (PS) have many downsides for dental applications.

View Article and Find Full Text PDF

In this study, the action of antimicrobial peptide (AMP) P5 and antimicrobial photodynamic therapy (aPDT) mediated by bixin and chlorin-e6 (Ce6) on Cutibacterium acnes (C. acnes) in planktonic phase and biofilm were evaluated both as monotherapies and combined therapies. Microbial viability after treatments were quantified by colony-forming units per milliliter of the sample (CFU/mL) and have demonstrated that all treatments employed exerted bactericidal activity, reducing the microbial load by more than 3 log CFU/mL, also demonstrating for the first time in the literature the antimicrobial photodynamic effect of bixin that occurs mostly through type I mechanism which was proved by the quantification of superoxide anion production.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a therapeutic modality with high contributions in the treatment of cancer. This approach is based on photophysical principles, which presents as a less invasive strategy than conventional therapies. Combined with nanotechnology, the therapy becomes more efficient because nanoparticles (NPs) have advantageous characteristics such as biocompatibility, controlled, and targeted release, promoting solubility and decreasing the toxicity and side effects involved.

View Article and Find Full Text PDF

Periodontitis is a chronic inflammatory disease that can lead to significant destruction of tooth-supporting tissues, compromising dental function and patient's health. Although the currently employed treatment approaches can limit the advance of the disease, the development of multifunctional and hierarchically structured materials is still in demand for achieving successful tissue regeneration. Here, we combine coaxial electrospinning and 3D printing techniques to prepare bilayered zein-based membranes as a potential dual drug delivery platform for periodontal tissue regeneration.

View Article and Find Full Text PDF

Background: Probiotic bacteria have been emerging as a trustworthy choice for the prevention and treatment of spp. infections. This study aimed to develop and characterize an orodispersible film (ODF) for delivering the potentially probiotic CRL 183 into the oral cavity, evaluating its in vitro antifungal activity against .

View Article and Find Full Text PDF

Background: Although Curcumin (CUR) has great potential as a photosensitizer, the low solubility in water impairs its clinical performance in photodynamic inactivation (PDI). This study sought to establish an effective antimicrobial protocol for PDI using CUR in three different bioadhesive formulations.

Methods: A CUR-loaded chitosan hydrogel with a poloxamer (CUR-CHIH), a CUR-loaded liquid crystal precursor system (CUR-LCP), a CUR-loaded microemulsion (CUR-ME), and CUR in dimethylsulfoxide (DMSO) solution (CUR-S; control formulation) were tested against in vitro and in situ oral biofilms.

View Article and Find Full Text PDF

The oral cavity is colonized by several species of microorganisms that can cause dental caries, periodontal diseases, candidiasis, endodontic infections, and, among other diseases related to the dental field. Conventional treatment consists of mechanical removal associated with systemic administration of antimicrobials, which can cause various side effects and microbial resistance. In this context, alternative therapies have been developed, including Antimicrobial Photodynamic Therapy (aPDT).

View Article and Find Full Text PDF

In this work, we describe the synthesis and characterization of the SPIONP-CUR conjugate between curcumin (CUR) and superparamagnetic iron oxide nanoparticles (SPIONPs), in addition to its application in photodynamic therapy (PDT) using a protocol free of organic solvents as a dispersant. The SPIONP-CUR conjugate was characterized by X-ray diffraction, transmission electron microscopy, zeta potential measurements, Fourier transform infrared spectroscopy, thermogravimetry, magnetometry and magnetic hyperthermia assays. The SPIONP-CUR conjugation occurred by bonding between the keto-enol moiety of CUR and the iron atoms present on the surfaces of the SPIONPs.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of the continuous irradiation with low intensity (continuous mode) and fractioned irradiation with high intensity (fractionated mode), keeping the same dose of light by using Light Emitting Diode (LEDs) with wavelength emission centered at 450 and at 660 nm, using methylene blue (MB), chlorin-e6 (Ce) and curcumin (CUR) as photosensitizers (PSs) against planktonic phase of E. faecalis. Cell viability was assessed by counting colonies forming per mL (CFU/mL), and the quantification of reactive species was performed by fluorescence with the photodegradation rate evaluated by measurements of absorbance of PSs at different times.

View Article and Find Full Text PDF

The antimicrobial photodynamic therapy (aPDT) has stood out as an alternative and promising method of disinfection and has been exploited for the treatment of oral bacteria. In this study, we evaluate in vitro the action of aPDT, mediated by methylene blue, chlorin-e6, and curcumin against clinical subgingival plaques that were resistant to metronidazole. The sensitivity profile of the samples to metronidazole was analyzed by the agar dilution method.

View Article and Find Full Text PDF

Parasitic diseases are a neglected and serious problem, especially in underdeveloped countries. Among the major parasitic diseases, Leishmaniasis figures as an urgent challenge due to its high incidence and severity. At the same time, the indiscriminate use of antibiotics by the population is increasing together with resistance to medicines.

View Article and Find Full Text PDF

Core-sheath nanofibers were successfully prepared via coaxial electrospinning by using chitosan with well-defined structural characteristics as the shell layer and poly (vinyl alcohol) (PVA) containing tetracycline hydrochloride (TH) as the core layer. The effects of the average degree of deacetylation (DD‾) of chitosan and the post-electrospinning genipin crosslinking on physicochemical and biological properties of resulting nonwovens were evaluated. Defect-free and geometrically uniform nanofibers with diameters predominantly in the range of 100-300 nm were prepared, and transmission electron microscopy (TEM) revealed the core-sheath structures and its preservation after crosslinking.

View Article and Find Full Text PDF

Recent scientific research has shown the use of chlorin, phthalocyanines, and porphyrins derivatives as photosensitizers in photodynamic therapy in the treatment of various pathologies, including some of the major skin diseases. Thus, the main goal of this critical review is to catalog the papers that used these photosensitizers in the treatment of acne vulgaris, psoriasis, papillomavirus infections, cutaneous leishmaniasis, and skin rejuvenation, and to explore the photodynamic therapy mechanisms against these conditions alongside their clinical benefits.

View Article and Find Full Text PDF

The aim of this study was to perform a systematic review of the literature followed by a meta-analysis about the efficacy of photodynamic therapy (PDT) on the microorganisms responsible for dental caries. The research question and the keywords were constructed according to the PICO strategy. The article search was done in Embase, Lilacs, Scielo, Medline, Scopus, Cochrane Library, Web of Science, Science Direct, and Pubmed databases.

View Article and Find Full Text PDF

Drug delivery systems (DDS) can be designed to enrich the pharmacological and therapeutic properties of several drugs. Many of the initial obstacles that impeded the clinical applications of conventional DDS have been overcome with nanotechnology-based DDS, especially those formed by chitosan (CS). CS is a linear polysaccharide obtained by the deacetylation of chitin, which has potential properties such as biocompatibility, hydrophilicity, biodegradability, non-toxicity, high bioavailability, simplicity of modification, aqueous solubility, and excellent chemical resistance.

View Article and Find Full Text PDF

Chitosan (CH) is a biopolymer that exhibits a number of interesting properties such as anti-inflammatory and antibacterial activity and is also a promising platform for the incorporation of photosensitizing agents. This study aimed to evaluate the efficacy of antimicrobial activity of chitosan hydrogel formulation alone and in combination with the methylene blue (MB) associated with antimicrobial photodynamic therapy (aPDT) against planktonic and biofilm phase of . Suspensions were sensitized with 12.

View Article and Find Full Text PDF

Bacterial resistance to available antibiotics nowadays is a global threat leading researchers around the world to study new treatment modalities for infections. Antimicrobial photodynamic therapy (aPDT) has been considered an effective and promising therapeutic alternative in this scenario. Briefly, this therapy is based on the activation of a non-toxic photosensitizing agent, known as photosensitizer (PS), by light at a specific wavelength generating cytotoxic singlet oxygen and free radicals.

View Article and Find Full Text PDF