African Americans, other minorities and underserved populations are consistently under- represented in clinical trials. Such underrepresentation results in a gap in the evidence base, and health disparities. The ABC Cardiovascular Implementation Study (CVIS) is a comprehensive prospective cohort registry that integrates social determinants of health.
View Article and Find Full Text PDFObjective: The study sought to design, pilot, and evaluate a federated data completeness tracking system (CTX) for assessing completeness in research data extracted from electronic health record data across the Accessible Research Commons for Health (ARCH) Clinical Data Research Network.
Materials And Methods: The CTX applies a systems-based approach to design workflow and technology for assessing completeness across distributed electronic health record data repositories participating in a queryable, federated network. The CTX invokes 2 positive feedback loops that utilize open source tools (DQe-c and Vue) to integrate technology and human actors in a system geared for increasing capacity and taking action.
The coxsackievirus and adenovirus receptor (CAR) is a transmembrane protein that is known to be a site of viral attachment and entry, but its physiologic functions are undefined. CAR expression is maximal in neonates and wanes rapidly after birth in organs such as heart, muscle, and brain, suggesting that CAR plays a role in the development of these tissues. Here, we show that CAR deficiency resulted in an embryonic lethal condition associated with cardiac defects.
View Article and Find Full Text PDFp205 belongs to a family of interferon-inducible proteins called the IFI-200 family, which have been implicated in the regulation of cell growth and differentiation. While p205 is induced in hematopoietic stem cells during myeloid cell differentiation, its function is not known. Therefore, the aim of this study was to determine the role of p205 in regulating proliferation in hematopoietic progenitor cells and in nonhematopoietic cell lines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2002
Telomerase is up-regulated in the vast majority of human cancers and serves to halt the progressive telomere shortening that ultimately blocks would-be cancer cells from achieving a full malignant phenotype. In contrast to humans, the laboratory mouse possesses long telomeres and, even in early generation telomerase-deficient mice, the level of telomere reserve is sufficient to avert telomere-based checkpoint responses and to permit full malignant progression. These features in the mouse provide an opportunity to determine whether enforced high-level telomerase activity can serve functions that extend beyond its ability to sustain telomere length and function.
View Article and Find Full Text PDF