The management of children with syndromes associated with an increased risk of benign and malignant neoplasms is a complex challenge for healthcare professionals. The 2023 AACR Childhood Cancer Predisposition Workshop provided updated consensus guidelines on cancer surveillance in these syndromes, aiming to improve early detection, intervention, and reduce morbidity associated with such neoplasms. In this paper, we review several of the rare conditions discussed in this workshop.
View Article and Find Full Text PDFPTEN hamartoma tumor syndrome (PHTS), DICER1-related tumor predisposition (DICER1) and tuberous sclerosis complex (TSC) are rare conditions which each increase risk for distinct spectra of benign and malignant neoplasms throughout childhood and adulthood. Surveillance considerations for each of these conditions focus on patient and family education, early detection and multidisciplinary care. In this manuscript, we present updated surveillance recommendations and considerations for children and adolescents with PHTS, DICER1 and TSC and provide suggestions for further research in each of these conditions.
View Article and Find Full Text PDFIn July 2023, the American Association for Cancer Research held the second Childhood Cancer Predisposition Workshop, at which international experts in pediatric cancer predisposition met to update the previously published 2017 consensus statements on pediatric cancer predisposition syndromes. Since 2017, advances in tumor and germline genetic testing and increased understanding of cancer predisposition in patients with pediatric cancer have led to significant changes in clinical care. Here, we provide an updated genetic counseling framework for pediatric oncology professionals.
View Article and Find Full Text PDFGenetic predisposition to neuroblastoma (NB) is relatively rare. Only 1% to 2% of patients have a family history of NB, 3% to 4% of cases present with bilateral or multifocal primary tumors, and occasional patients have syndromes that are associated with increased NB risk. Previously, a germline pathogenic variant (GPV) in PHOX2B was associated with Hirschsprung disease and congenital central hypoventilation syndrome.
View Article and Find Full Text PDFPurpose: Professional guidelines recommend engaging adolescents and young adults (AYAs) in medical decision making (DM), including whether to undergo genomic sequencing (GS). We explored DM around GS and attitudes after return of GS results among a diverse group of AYAs with cancer and their parents.
Methods: We surveyed AYAs with cancer (n = 75) and their parents (n = 52) 6 months after receiving GS results through the Texas KidsCanSeq study.
Juvenile polyposis syndrome (JPS) is a childhood polyposis syndrome with up to a 50% lifetime risk of gastrointestinal cancer. Germline pathogenic variants in BMPR1A and SMAD4 are responsible for around 40% of cases of JPS, but for the majority of individuals, the underlying genetic cause is unknown. We identified a family for which polyposis spanned four generations, and the proband had a clinical diagnosis of JPS.
View Article and Find Full Text PDFJuvenile polyposis syndrome (JPS) is a clinically diagnosed hamartomatous polyposis syndrome that increases the risk of gastrointestinal cancer. Approximately 40%-50% of JPS is caused by a germline disease-causing variant (DCV) in the or genes. The aim of this study was to characterize the phenotype of DCV-negative JPS and compare it with DCV-positive JPS.
View Article and Find Full Text PDFHereditary gastrointestinal cancer predisposition syndromes have been well characterized, but management strategies and surveillance remain a major challenge, especially in childhood. In October 2016, the American Association for Cancer Research organized the AACR Childhood Cancer Predisposition Workshop in which international experts in care of children with a hereditary risk of cancer met to define surveillance strategies and management of children with cancer predisposition syndromes. In this article, we review the current literature in polyposis syndromes that can be diagnosed in childhood and may be associated with an increased incidence of gastrointestinal neoplasms and other cancer types.
View Article and Find Full Text PDFRetinoblastoma (RB) is the most common intraocular malignancy in childhood. Approximately 40% of retinoblastomas are hereditary and due to germline mutations in the gene. Children with hereditary RB are also at risk for developing a midline intracranial tumor, most commonly pineoblastoma.
View Article and Find Full Text PDFAs the understanding of the genetic etiology of childhood cancers increases, the need for the involvement of experts familiar with the provision of genetic counseling for this population is paramount. In October 2016, the American Association for Cancer Research organized the AACR Childhood Cancer Predisposition Workshop in which international experts in pediatric cancer predisposition met to establish surveillance guidelines for children with cancer predisposition. Identifying for whom, when, why, and how these cancer predisposition surveillance guidelines should be implemented is essential.
View Article and Find Full Text PDFLeukemia, the most common childhood cancer, has long been recognized to occasionally run in families. The first clues about the genetic mechanisms underlying familial leukemia emerged in 1990 when Li-Fraumeni syndrome was linked to mutations. Since this discovery, many other genes associated with hereditary predisposition to leukemia have been identified.
View Article and Find Full Text PDFDespite the increased utilization of genome and exome sequencing, little is known about the actual content and process of informed consent for sequencing. We addressed this by interviewing 29 genetic counselors and research coordinators experienced in obtaining informed consent for sequencing in research and clinical settings. Interviews focused on the process and content of informed consent; patients/participants' common questions, concerns and misperceptions; and challenges to obtaining informed consent.
View Article and Find Full Text PDFAs the use of genomic technology has expanded in research and clinical settings, issues surrounding informed consent for genome and exome sequencing have surfaced. Despite the importance of informed consent, little is known about the specific challenges that professionals encounter when consenting patients or research participants for genomic sequencing. We interviewed 29 genetic counselors and research coordinators with considerable experience obtaining informed consent for genomic sequencing to understand their experiences and perspectives.
View Article and Find Full Text PDF