Objectives: This analysis was performed to evaluate the transition of local impedance (LI) drop during pulmonary vein isolation (PVI) to durable block and mature lesion formation based on 3-month mapping procedures.
Background: A radiofrequency catheter measuring LI has been shown to be effective for performing PVI in patients with paroxysmal atrial fibrillation. Previous analysis has demonstrated LI drop to be predictive of pulmonary vein segment conduction block during an atrial fibrillation ablation procedure.
The purpose of this study was to assess the effect local impedance (LI) has on an ablation workflow when combined with a contact force (CF) ablation catheter. Left pulmonary vein isolation was performed in an canine model ( = 8) using a nominal (30 W) or an elevated (50 W) power strategy with a CF catheter. The catheter was enabled to measure LI prior to and during ablation.
View Article and Find Full Text PDFKnowledge of the distributions of temperature in cardiac tissue during and after ablation is important in advancing a basic understanding of this process, and for improving its efficacy in treating arrhythmias. Technologies that enable real-time temperature detection and thermal characterization in the transmural direction can help to predict the depths and sizes of lesion that form. Herein, materials and designs for an injectable device platform that supports precision sensors of temperature and thermal transport properties distributed along the length of an ultrathin and flexible needle-type polymer substrate are introduced.
View Article and Find Full Text PDFVentricular fibrillation is the major underlying cause of sudden cardiac death. Understanding the complex activation patterns that give rise to ventricular fibrillation requires high resolution mapping of localized activation. The use of multi-electrode mapping unraveled re-entrant activation patterns that underlie ventricular fibrillation.
View Article and Find Full Text PDFBackground: Therapy strategies for atrial fibrillation based on electric characterization are becoming viable personalized medicine approaches to treat a notoriously difficult disease. In light of these approaches that rely on high-density surface mapping, this study aims to evaluate the presence of 3-dimensional electric substrate variations within the transmural wall during acute episodes of atrial fibrillation.
Methods And Results: Optical signals were simultaneously acquired from the epicardial and endocardial tissue during acute fibrillation in ovine isolated left atria.
Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2014
Instability of the inner mitochondrial membrane potential (ΔΨm) has been implicated in electrical dysfunction, including arrhythmogenesis during ischemia-reperfusion. Monitoring ΔΨm has led to conflicting results, where depolarization has been reported as sporadic and as a propagating wave. The present study was designed to resolve the aforementioned difference and determine the unknown relationship between ΔΨm and electrophysiology.
View Article and Find Full Text PDFProg Biophys Mol Biol
August 2014
Advances in material science techniques and pioneering circuit designs have led to the development of electronic membranes that can form intimate contacts with biological tissues. In this review, we present the range of geometries, sensors, and actuators available for custom configurations of electronic membranes in cardiac applications. Additionally, we highlight the desirable mechanics achieved by such devices that allow the circuits and substrates to deform with the beating heart.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
May 2014
Defibrillation is one of the most successful and widely recognized applications of electrotherapy. Yet the historical road to its first successful application in a patient and the innovative adaptation to an implantable device is marred with unexpected turns, political and personal setbacks, and public and scientific condemnation at each new idea. Driven by dedicated scientists and ever-advancing creative applications of new technologies, from electrocardiography to high density mapping and computational simulations, the field of defibrillation persevered and continued to evolve to the life-saving tool it is today.
View Article and Find Full Text PDFMeans for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components.
View Article and Find Full Text PDFObjectives: The goal of this study was to develop a low-energy, implantable device-based multistage electrotherapy (MSE) to terminate atrial fibrillation (AF).
Background: Previous attempts to perform cardioversion of AF by using an implantable device were limited by the pain caused by use of a high-energy single biphasic shock (BPS).
Methods: Transvenous leads were implanted into the right atrium (RA), coronary sinus, and left pulmonary artery of 14 dogs.
Am J Physiol Heart Circ Physiol
December 2013
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment.
View Article and Find Full Text PDF