Understanding photosynthetic acclimation to elevated CO (eCO) is important for predicting plant physiology and optimizing management decisions under global climate change, but is underexplored in important horticultural crops. We grew three crops differing in stomatal density-namely chrysanthemum, tomato, and cucumber-at near-ambient CO (450 μmol mol) and eCO (900 μmol mol) for 6 weeks. Steady-state and dynamic photosynthetic and stomatal conductance (g) responses were quantified by gas exchange measurements.
View Article and Find Full Text PDFThe conversion of supplemental greenhouse light energy into biomass is not always optimal. Recent trends in global energy prices and discussions on climate change highlight the need to reduce our energy footprint associated with the use of supplemental light in greenhouse crop production. This can be achieved by implementing "smart" lighting regimens which in turn rely on a good understanding of how fluctuating light influences photosynthetic physiology.
View Article and Find Full Text PDFUnder natural conditions, irradiance frequently fluctuates, causing net photosynthesis rate () to respond slowly and reducing the yields. We quantified the genotypic variation of photosynthetic induction in 19 genotypes among the following six horticultural crops: basil, chrysanthemum, cucumber, lettuce, tomato, and rose. Kinetics of photosynthetic induction and the stomatal opening were measured by exposing shade-adapted leaves (50 μmol m s) to a high irradiance (1000 μmol m s) until reached a steady state.
View Article and Find Full Text PDF