Unlabelled: Incidences of fluconazole (FLC) resistance among clinical isolates are a growing issue in clinics. The pleiotropic drug response network in confers azole resistance and is defined primarily by the ZnCys zinc cluster-containing transcription factor Pdr1 and target genes such as , which encodes an ATP-binding cassette transporter protein thought to act as an FLC efflux pump. Mutations in the gene that render the transcription factor hyperactive are the most common cause of fluconazole resistance among clinical isolates.
View Article and Find Full Text PDFIncidences of fluconazole (FLC) resistance among clinical isolates is a growing issue in clinics. The pleiotropic drug response (PDR) network in . confers azole resistance and is defined primarily by the ZnCys zinc cluster-containing transcription factor Pdr1 and target genes such as , that encodes an ATP-binding cassette transporter protein thought to act as a FLC efflux pump.
View Article and Find Full Text PDFFungal infections are a major contributor to morbidity and mortality among immunocompromised populations. Moreover, fungal disease caused by molds are difficult to treat and are associated with particularly high mortality. To address the need for new mold-active antifungal drugs, we performed a high-throughput screen with , the most common pathogenic mold.
View Article and Find Full Text PDFMolds are environmental fungi that can cause disease in immunocompromised individuals. The most common pathogenic mold is which is typically inhaled into the lungs and causes invasive pulmonary disease. In a subset of these patients, this infection can spread from the lungs to other organs including the brain, resulting in cerebral aspergillosis.
View Article and Find Full Text PDFIntroduction: An attractive, yet unrealized, goal in cancer therapy is repurposing psychiatric drugs that can readily penetrate the blood-brain barrier for the treatment of primary brain tumors and brain metastases. Phenothiazines (PTZs) have demonstrated anti-cancer properties through a variety of mechanisms. However, it remains unclear whether these effects are entirely separate from their activity as dopamine and serotonin receptor (DR/5-HTR) antagonists.
View Article and Find Full Text PDFMultidrug resistance (MDR) transporters such as ATP-Binding Cassette (ABC) and Major Facilitator Superfamily proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against spp.
View Article and Find Full Text PDFMultidrug resistance (MDR) transporters such as ATP Binding Cassette (ABC) and Major Facilitator Superfamily (MFS) proteins are important mediators of antifungal drug resistance, particularly with respect to azole class drugs. Consequently, identifying molecules that are not susceptible to this mechanism of resistance is an important goal for new antifungal drug discovery. As part of a project to optimize the antifungal activity of clinically used phenothiazines, we synthesized a fluphenazine derivative (CWHM-974) with 8-fold higher activity against spp.
View Article and Find Full Text PDFNew antifungal therapies are needed for both systemic, invasive infections in addition to superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to nonsystemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2 to 16 μg/mL) against medically important yeasts and molds, including clinical isolates resistant to azoles and/or echinocandins.
View Article and Find Full Text PDFHuman fungal infections caused by molds have been on the rise in recent years. These infections have high mortality rates compared to other fungal infections, and yet treatment options are limited due to resistance to clinical antifungals and lack of broad-spectrum activity against molds. Technical challenges associated with molds have limited large-throughput screening efforts for anti-mold compounds: therefore, we adapted an assay for use with A.
View Article and Find Full Text PDFNew antifungal therapies are needed for both systemic, invasive infections as well as superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to non-systemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2-16 µg/mL) against medically important yeasts and moulds, including clinical isolates resistant to azoles and/or echinocandins.
View Article and Find Full Text PDFCryptococcus neoformans is an important human fungal pathogen for which the external environment is its primary niche. Previous work has shown that two nonessential acetyl-CoA metabolism enzymes, ATP-citrate lyase () and acetyl-CoA synthetase (), play important roles in C. neoformans infection.
View Article and Find Full Text PDFThere is an urgent need for new antifungals to treat cryptococcal meningoencephalitis, a leading cause of mortality in people living with HIV/AIDS. An important aspect of antifungal drug development is the validation of targets to determine whether they are required for the survival of the organism in animal models of disease. In Cryptococcus neoformans, a copper-regulated promoter (pCTR4-2) has been used previously to modulate gene expression .
View Article and Find Full Text PDFCryptococcus neoformans is an environmental yeast and an opportunistic human pathogen. The ability to cause disease depends on the ability to adapt to the human host. Previous studies implicated nfectivity-elated inase (, CNAG_03048) as required for establishing an infection.
View Article and Find Full Text PDFAlanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment, Aspergillus fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A.
View Article and Find Full Text PDFThe opportunistic human fungal pathogen Cryptococcus neoformans has tremendous impact on global health, causing 181,000 deaths annually. Current treatment options are limited, and the frequent development of drug resistance exacerbates the challenge of managing invasive cryptococcal infections. In diverse fungal pathogens, the essential molecular chaperone Hsp90 governs fungal survival, drug resistance, and virulence.
View Article and Find Full Text PDFTreatment of invasive mold infections is limited by the lack of adequate drug options that are effective against these fatal infections. High-throughput screening of molds using traditional antifungal assays of growth is problematic and has greatly limited our ability to identify new mold-active agents. Here, we present a high-throughput screening platform for use with Aspergillus fumigatus, the most common causative agent of invasive mold infections, for the discovery of novel mold-active antifungals.
View Article and Find Full Text PDFA synthesis of the reported antifungal agent (+)-hippolide J is presented. The rapid assembly of the natural product was enabled through implementation of an enantioselective isomerization/[2 + 2]-cycloaddition sequence. Due to the simplicity of the route, >100 mg of the natural product were prepared in a single pass.
View Article and Find Full Text PDFCurr Opin Microbiol
October 2020
Invasive fungal infections are responsible for a significant disease burden worldwide. Drugs to treat these infections are limited to only four unique classes, and despite these available treatments, mortality rates remain unacceptably high. In this review, we will discuss antifungal drug screening and how the approach to identifying novel compounds needs move away from traditional growth-based assays in order to meet the demand for new drugs.
View Article and Find Full Text PDFis one of the most important human fungal pathogens and causes life-threatening meningoencephalitis in immunocompromised patients. The current gold standard therapy for meningoencephalitis is based on medications that are over 50 years old and is not readily available in regions with high disease burden. Here, we report the mycologic, mechanistic, and pharmacologic characterization of a set of benzothioureas with highly selective fungicidal activity against .
View Article and Find Full Text PDFThe ability of to cause disease in humans varies significantly among strains with highly related genotypes. In general, environmental isolates of pathogenic species such as var. have reduced virulence relative to clinical isolates, despite having no differences in the expression of the canonical virulence traits (high-temperature growth, melanization, and capsule formation).
View Article and Find Full Text PDFis closely related to , the major cause of invasive mold infections. Even though is commonly found in diverse environments, including hospitals, it rarely causes invasive disease. Why causes less human disease than is unclear.
View Article and Find Full Text PDFAouacheria question the interpretation of contemporary assays to monitor programmed cell death with apoptosis-like features (A-PCD) in Although our study focuses on fungal A-PCD for host immune surveillance and infectious outcomes, the experimental approach incorporates multiple independent A-PCD markers and genetic manipulations based on fungal rather than mammalian orthologs to circumvent the limitations associated with any single approach.
View Article and Find Full Text PDFHeterogeneity among isolates results in unique virulence potential and inflammatory responses. How these isolates drive specific immune responses and how this affects fungally induced lung damage and disease outcome are unresolved. We demonstrate that the highly virulent CEA10 strain is able to rapidly germinate within the immunocompetent lung environment, inducing greater lung damage, vascular leakage, and interleukin 1α (IL-1α) release than the low-virulence Af293 strain, which germinates with a lower frequency in this environment.
View Article and Find Full Text PDFHumans inhale mold conidia daily and typically experience lifelong asymptomatic clearance. Conidial germination into tissue-invasive hyphae can occur in individuals with defects in myeloid function, although the mechanism of myeloid cell-mediated immune surveillance remains unclear. By monitoring fungal physiology in vivo, we demonstrate that lung neutrophils trigger programmed cell death with apoptosis-like features in conidia, the most prevalent human mold pathogen.
View Article and Find Full Text PDF