Publications by authors named "Sarah Quillen"

Article Synopsis
  • The study aimed to explore how topical 2% ripasudil (a Rho kinase inhibitor) protects the nervous system, specifically looking at retinal ganglion cell (RGC) loss in mice exposed to increased intraocular pressure (IOP) and optic nerve damage.
  • Results showed that ripasudil significantly reduced RGC axon and soma loss compared to saline-treated controls, indicating its protective effects against nerve damage.
  • The findings suggest that ripasudil works by suppressing ROCK signaling pathways in the retina and optic nerve, affecting both RGCs and astrocyte responses to elevated IOP.
View Article and Find Full Text PDF

Purpose: The strain response of the mouse astrocytic lamina (AL) to an ex vivo mechanical test was compared between two protocols: eyes that underwent sustained intraocular pressure (IOP) increase and eyes after optic nerve crush.

Methods: Chronic IOP elevation was induced by microbead injection or the optic nerve was crushed in mice with widespread green fluorescence. After 3 days or 6 weeks, eyes were inflation tested by a published method of two-photon fluorescence to image the AL.

View Article and Find Full Text PDF

A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and human glaucoma.

View Article and Find Full Text PDF
Article Synopsis
  • * Research involved bulk RNA-sequencing to analyze gene expression in the unmyelinated and myelinated regions of the optic nerve in mice, revealing distinct patterns and pathways affected by optic nerve injury and glaucoma.
  • * Findings indicated that the unmyelinated optic nerve had unique gene expression profiles, particularly related to astrocytes, and that gene expression changes were more extensive following nerve crush compared to glaucoma, highlighting the importance of the unmyelinated region in IOP responses.
View Article and Find Full Text PDF

To identify changes in response to experimental intraocular pressure (IOP) elevation associated with the laminin α1 nmf223 mutation in mice. Laminin mutant (LM) mice (Lama1) and C57BL/6J (B6) mice in two age groups each (4-5 months and >1 year) underwent intracameral microbead injections to produce unilaterally elevated IOP. We assessed axonal transport block of immunofluorescently labeled amyloid precursor protein (APP) after 3 days and retinal ganglion cell (RGC) axon loss after 6 weeks.

View Article and Find Full Text PDF

Purpose: To measure quantitatively changes in lamina cribrosa (LC) cell and connective tissue structure in human glaucoma eyes.

Methods: We studied 27 glaucoma and 19 age-matched non-glaucoma postmortem eyes. In 25 eyes, LC cross-sections were examined by confocal and multiphoton microscopy to quantify structures identified by anti-glial fibrillary acidic protein (GFAP), phalloidin-labeled F-actin, nuclear 4',6-diamidino-2-phenylindole (DAPI), and by second harmonic generation imaging of LC beams.

View Article and Find Full Text PDF

Aquaporin 4 is absent from astrocytes in the rodent optic nerve head, despite high expression in the retina and myelinated optic nerve. The purpose of this study was to quantify regional aquaporin channel expression in astrocytes of the porcine and human mouse optic nerve (ON). Ocular tissue sections were immunolabeled for aquaporins 1(AQP1), 4(AQP4), and 9(AQP9), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP) and alpha-dystroglycan (αDG) for their presence in retina, lamina, myelin transition zone (MTZ, region just posterior to lamina) and myelinated ON (MON).

View Article and Find Full Text PDF

The responses of astrocytes in the optic nerve head (ONH) to mechanical and biochemical stimuli are important to understanding the degeneration of retinal ganglion cell axons in glaucoma. The ONH in glaucoma is vulnerable to stress produced by the intraocular pressure (IOP). Notably, after three days of elevated IOP in a mouse model, the junctions between the astrocytic processes and the peripapillary sclera were altered and the structural compliance of the ONH increased.

View Article and Find Full Text PDF

Glaucoma is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is one of the major risk factors for glaucoma onset and progression, and available pharmaceutical interventions are exclusively targeted at IOP lowering. However, degeneration of retinal ganglion cells (RGCs) may continue to progress despite extensive lowering of IOP.

View Article and Find Full Text PDF

Purpose: To study aquaporin channel expression in astrocytes of the mouse optic nerve (ON) and the response to IOP elevation in mice lacking aquaporin 4 (AQP4 null).

Methods: C57BL/6 (B6) and AQP4 null mice were exposed to bead-induced IOP elevation for 3 days (3D-IOP), 1 and 6 weeks. Mouse ocular tissue sections were immunolabeled against aquaporins 1(AQP1), 4(AQP4), and 9(AQP9).

View Article and Find Full Text PDF

Retinal ganglion cell (RGC) replacement holds potential for restoring vision lost to optic neuropathy. Transplanted RGCs must undergo neuroretinal integration to receive afferent visual signals for processing and efferent transmission. To date, retinal integration following RGC transplantation has been limited.

View Article and Find Full Text PDF

Purpose: To delineate responses of optic nerve head astrocytes to sustained intraocular pressure (IOP) elevation in mice.

Methods: We elevated IOP for 1 day to 6 weeks by intracameral microbead injection in 4 strains of mice. Astrocyte alterations were studied by transmission electron microscopy (TEM) including immunogold molecular localization, and by laser scanning microscopy (LSM) with immunofluorescence for integrin β1, α-dystroglycan, and glial fibrillary acidic protein (GFAP).

View Article and Find Full Text PDF