Publications by authors named "Sarah Piacente"

DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair.

View Article and Find Full Text PDF

The vaccinia virus core contains a 195 kb double stranded DNA genome, a multi-subunit RNA polymerase, transcription initiation and termination factors and mRNA processing enzymes. Upon infection, vaccinia virus early gene transcription takes place in the virus core. Transcription initiates at early promoters and terminates in response to a termination motif, UUUUUNU, in the nascent mRNA.

View Article and Find Full Text PDF

Vaccinia virus early gene transcription requires the vaccinia termination factor, VTF, nucleoside triphosphate phosphohydrolase I, NPH I, ATP, the virion RNA polymerase, and the motif, UUUUUNU, in the nascent RNA, found within 30 to 50 bases from the poly A addition site, in vivo. In this study, the relationships among the vaccinia early gene transcription termination efficiency, termination motif specificity, and the elongation rate were investigated. A low transcription elongation rate maximizes termination efficiency and minimizes specificity for the UUUUUNU motif.

View Article and Find Full Text PDF

Prior efforts demonstrated that RNA oligonucleotides containing the transcription termination signal UUUUUNU stimulate premature termination of vaccinia virus early gene transcription, in vitro. This observation suggests that viral transcription termination may be an attractive target for the development of anti-poxvirus agents. Since short RNA molecules are readily susceptible to nuclease digestion, their use would require stabilizing modifications.

View Article and Find Full Text PDF

Vaccinia virus nucleoside triphosphate phosphohydrolase I (NPH I) is an essential early gene transcription termination factor. The C-terminal end of NPH I binds to the N-terminal end of the H4L subunit (RAP94) of the virion RNA polymerase. This interaction is required for transcription termination and transcript release.

View Article and Find Full Text PDF