Publications by authors named "Sarah Osterwald"

The alternative lengthening of telomeres (ALT) mechanism allows cancer cells to escape senescence and apoptosis in the absence of active telomerase. A characteristic feature of this pathway is the assembly of ALT-associated promyelocytic leukemia (PML) nuclear bodies (APBs) at telomeres. Here, we dissected the role of APBs in a human ALT cell line by performing an RNA interference screen using an automated 3D fluorescence microscopy platform and advanced 3D image analysis.

View Article and Find Full Text PDF

The unlimited proliferation potential of cancer cells requires the maintenance of their telomeres. This is frequently accomplished by reactivation of telomerase. However, in a significant fraction of tumors an alternative lengthening of telomeres (ALT) mechanism is active.

View Article and Find Full Text PDF

A high-content colocalization RNA interference screen based on automatic three-color confocal fluorescence microscopy was developed to analyze the alternative lengthening of telomeres (ALT) pathway. Via this pathway telomerase-negative cancer cells can maintain their telomeres and with it their unlimited proliferative potential. A hallmark of ALT cells is the colocalization of promyelocytic leukemia (PML) nuclear bodies with telomeres to form ALT-associated PML nuclear bodies (APBs).

View Article and Find Full Text PDF