Publications by authors named "Sarah Ngugi"

Burkholderia pseudomallei is the causative agent of melioidosis and presents with diverse clinical manifestations. Naturally occurring infection occurs following contamination of cuts or skin abrasions, or ingestion of contaminated water, and occasionally through inhalational of infected soil or water particles. The influence of the route of disease acquisition on the efficacy of medical countermeasures has not been explored in humans or in appropriate animal models.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the causative agent of melioidosis, a severe human infection that is difficult to treat with antibiotics and for which there is no effective vaccine. Development of novel treatments rely upon appropriately characterized animal models. The common marmoset (Callithrix jacchus) has been established at Defense Science and Technology laboratories (DSTL) as a model of melioidosis.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the causative agent of melioidosis, which is a Gram negative, facultative intracellular bacterium. Disease is prevalent in SE Asia and in northern Australia, as well as in other tropical and subtropical regions. Recently, there is an increasing awareness of the importance of bacterial ingestion as a potential route of infection, particularly in cases of unexplained origin of the disease.

View Article and Find Full Text PDF
Article Synopsis
  • EBOV-Makona, derived from the 2013-2016 outbreak, shows lower virulence in immune-deficient mice than earlier strains, suggesting altered pathogenicity.
  • Aerosol exposure resulted in more deaths among mice compared to injected doses, indicating potential differences in transmission routes.
  • The study suggests slower virus growth may allow for a better immune response, highlighting the mouse model’s limitations in testing treatments but usefulness in understanding the virus's behavior and immune interactions.
View Article and Find Full Text PDF

The West Africa Ebola virus (EBOV) outbreak has highlighted the need for effective disinfectants capable of reducing viral load in a range of sample types, equipment and settings. Although chlorine-based products are widely used, they can also be damaging to equipment or apparatus that needs continuous use such as aircraft use for transportation of infected people. Two aircraft cleaning solutions were assessed alongside two common laboratory disinfectants in a contact kill assay with EBOV on two aircraft relevant materials representative of a porous and non-porous surface.

View Article and Find Full Text PDF

The marmoset model of melioidosis was used to explore whether there was any difference in the disease presentation and/or the lesion formation following inhalational challenge with one of four strains of Burkholderia pseudomallei (K96243, 1026b, HBPUB10303a and HBPUB10134a). Marmosets were challenged with a range of bacterial doses and bacterial load, histological and physiological features were determined temporally following lethal disease. Melioidosis presented as an acute, febrile disease with bacteraemia, bacterial dissemination, necrotizing hepatitis, splenitis and pneumonia which was independent of the challenge strain.

View Article and Find Full Text PDF

The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact.

View Article and Find Full Text PDF
Article Synopsis
  • Rapid inactivation of the Ebola virus (EBOV) is essential for effective testing in low-resource outbreak situations.
  • Testing revealed that Buffer AVL (commonly used for RNA extraction) was ineffective in inactivating EBOV in 67% of samples, indicating it shouldn't be relied upon for virus inactivation in diagnostics.
  • However, combining Buffer AVL with ethanol or heat treatments resulted in complete viral inactivation in all tested samples, while still allowing for the extraction of high-quality RNA for PCR analysis.
View Article and Find Full Text PDF

Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge.

View Article and Find Full Text PDF

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is refractory to antibiotic treatment and there is currently no licensed vaccine. In this report we detail the construction and protective efficacy of a polysaccharide-protein conjugate composed of B.

View Article and Find Full Text PDF

The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity.

View Article and Find Full Text PDF

Rapid detection of the category B biothreat agents Burkholderia pseudomallei and Burkholderia mallei in acute infections is critical to ensure that appropriate treatment is administered quickly to reduce an otherwise high probability of mortality (ca. 40% for B. pseudomallei).

View Article and Find Full Text PDF

The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis.

View Article and Find Full Text PDF

Burkholderia thailandensis is a less virulent close relative of Burkholderia pseudomallei, a CDC category B biothreat agent. We have previously shown that lipopolysaccharide (LPS) extracted from B. pseudomallei can provide protection against a lethal challenge of B.

View Article and Find Full Text PDF