Cochlear implant (CI) systems differ in terms of electrode design and signal processing. It is likely that patients fit with different implant systems will experience different percepts when presented speech via their implant. The sound quality of speech can be evaluated by asking single-sided-deaf (SSD) listeners fit with a cochlear implant (CI) to modify clean signals presented to their typically hearing ear to match the sound quality of signals presented to their CI ear.
View Article and Find Full Text PDFPatients fit with cochlear implants (CIs) commonly indicate at the time of device fitting and for some time after, that the speech signal sounds abnormal. A high pitch or timbre is one component of the abnormal percept. In this project, our aim was to determine whether a number of years of CI use reduced perceived upshifts in frequency spectrum and/or voice fundamental frequency.
View Article and Find Full Text PDFBackground: Both the Roger remote microphone and on-ear, adaptive beamforming technologies (e.g., Phonak UltraZoom) have been shown to improve speech understanding in noise for cochlear implant (CI) listeners when tested in audio-only (A-only) test environments.
View Article and Find Full Text PDFObjectives: We investigated the ability of single-sided deaf listeners implanted with a cochlear implant (SSD-CI) to (1) determine the front-back and left-right location of sound sources presented from loudspeakers surrounding the listener and (2) use small head rotations to further improve their localization performance. The resulting behavioral data were used for further analyses investigating the value of so-called "monaural" spectral shape cues for front-back sound source localization.
Design: Eight SSD-CI patients were tested with their cochlear implant (CI) on and off.
Background: Previous research has found that when the location of a talker was varied and an auditory prompt indicated the location of the talker, the addition of visual information produced a significant and large improvement in speech understanding for listeners with bilateral cochlear implants (CIs) but not with a unilateral CI. Presumably, the sound-source localization ability of the bilateral CI listeners allowed them to orient to the auditory prompt and benefit from visual information for the subsequent target sentence.
Purpose: The goal of this project was to assess the robustness of previous research by using a different test environment, a different CI, different test material, and a different response measure.
Fourteen single-sided deaf listeners fit with an MED-EL cochlear implant (CI) judged the similarity of clean signals presented to their CI and modified signals presented to their normal-hearing ear. The signals to the normal-hearing ear were created by (a) filtering, (b) spectral smearing, (c) changing overall fundamental frequency (F0), (d) F0 contour flattening, (e) changing formant frequencies, (f) altering resonances and ring times to create a metallic sound quality, (g) using a noise vocoder, or (h) using a sine vocoder. The operations could be used singly or in any combination.
View Article and Find Full Text PDFPurpose Our aim was to make audible for normal-hearing listeners the Mickey Mouse™ sound quality of cochlear implants (CIs) often found following device activation. Method The listeners were 3 single-sided deaf patients fit with a CI and who had 6 months or less of CI experience. Computed tomography imaging established the location of each electrode contact in the cochlea and allowed an estimate of the place frequency of the tissue nearest each electrode.
View Article and Find Full Text PDFJ Am Acad Audiol
September 2019
Background: When cochlear implant (CI) listeners use a directional microphone or beamformer system to improve speech understanding in noise, the gain in understanding for speech presented from the front of the listener coexists with a decrease in speech understanding from the back. One way to maximize the usefulness of these systems is to keep a microphone in the omnidirectional mode in low noise and then switch to directional mode in high noise.
Purpose: The purpose of this experiment was to assess the levels of speech understanding in noise allowed by a new signal processing algorithm for MED EL CIs, AutoAdaptive, which operates in the manner described previously.
Purpose: The primary purpose of this study was to assess speech understanding in quiet and in diffuse noise for adult cochlear implant (CI) recipients utilizing bimodal hearing or bilateral CIs. Our primary hypothesis was that bilateral CI recipients would demonstrate less effect of source azimuth in the bilateral CI condition due to symmetric interaural head shadow.
Method: Sentence recognition was assessed for adult bilateral (n = 25) CI users and bimodal listeners (n = 12) in three conditions: (1) source location certainty regarding fixed target azimuth, (2) source location uncertainty regarding roving target azimuth, and (3) Condition 2 repeated, allowing listeners to turn their heads, as needed.
Objectives: We report on the ability of patients fit with bilateral cochlear implants (CIs) to distinguish the front-back location of sound sources both with and without head movements. At issue was (i) whether CI patients are more prone to front-back confusions than normal hearing listeners for wideband, high-frequency stimuli; and (ii) if CI patients can utilize dynamic binaural difference cues, in tandem with their own head rotation, to resolve these front-back confusions. Front-back confusions offer a binary metric to gain insight into CI patients' ability to localize sound sources under dynamic conditions not generally measured in laboratory settings where both the sound source and patient are static.
View Article and Find Full Text PDFBackground: Sentence understanding scores for patients with cochlear implants (CIs) when tested in quiet are relatively high. However, sentence understanding scores for patients with CIs plummet with the addition of noise.
Purpose: To assess, for patients with CIs (MED-EL), (1) the value to speech understanding of two new, noise-reducing microphone settings and (2) the effect of the microphone settings on sound source localization.
Objective: The goal of the present study was to assess the sound quality of a cochlear implant for single-sided deaf (SSD) patients fit with a cochlear implant (CI).
Background: One of the fundamental, unanswered questions in CI research is "what does an implant sound like?" Conventional CI patients must use the memory of a clean signal, often decades old, to judge the sound quality of their CIs. In contrast, SSD-CI patients can rate the similarity of a clean signal presented to the CI ear and candidate, CI-like signals presented to the ear with normal hearing.
Purpose: Five experiments probed auditory-visual (AV) understanding of sentences by users of cochlear implants (CIs).
Method: Sentence material was presented in auditory (A), visual (V), and AV test conditions to listeners with normal hearing and CI users.
Results: (a) Most CI users report that most of the time, they have access to both A and V information when listening to speech.
Objective: To assess improvements in sound source localization and speech understanding in complex listening environments after unilateral cochlear implantation for single-sided deafness (SSD).
Study Design: Nonrandomized, open, prospective case series.
Setting: Tertiary referral center.