Dysregulation of prefrontal cortical glutamatergic signalling via NMDA receptor hypofunction has been implicated in cognitive dysfunction and impaired inhibitory control in such neuropsychiatric disorders as schizophrenia, attention-deficit hyperactivity disorder and drug addiction. Although NMDA receptors functionally interact with metabotropic glutamate receptor 5 (mGluR5), the consequence of this interaction for glutamate release in the prefrontal cortex (PFC) remains unknown. We therefore investigated the effects of positive and negative allosteric mGluR5 modulation on changes in extracellular glutamate efflux in the medial PFC (mPFC) induced by systemic administration of the non-competitive NMDA receptor antagonist dizocilpine (or MK801) in rats.
View Article and Find Full Text PDFBackground: Metabotropic glutamate receptor 4 (mGluR4) and dopamine D receptors are specifically expressed within the indirect pathway neurons of the striato-pallidal-subthalamic pathway. This unique expression profile suggests that mGluR4 and D receptors may play a cooperative role in the regulation and inhibitory control of behaviour. We investigated this possibility by testing the effects of a functionally-characterised positive allosteric mGluR4 modulator, 4-((E)-styryl)-pyrimidin-2-ylamine (Cpd11), both alone and in combination with the D receptor antagonist eticlopride, on two distinct forms of impulsivity.
View Article and Find Full Text PDFRationale: Impaired N-methyl-D-aspartate (NMDA) receptor signalling underlies several psychiatric disorders that express high levels of impulsivity. Although synergistic interactions exist between NMDA receptors and metabotropic glutamate receptor 5 (mGluR5), the significance of this interaction for impulsivity is unknown.
Objective: This study aims to investigate the effects of negative and positive allosteric mGluR5 modulation (NAM/PAM) on trait impulsivity and impulsivity evoked by NMDA receptor antagonism in rats.