Publications by authors named "Sarah Muse"

Culture contamination, end-product toxicity, and energy efficient product recovery are long-standing bioprocess challenges. To solve these problems, we propose a high-pressure fermentation strategy, coupled with in situ extraction using the abundant and renewable solvent supercritical carbon dioxide (scCO), which is also known for its broad microbial lethality. Towards this goal, we report the domestication and engineering of a scCO-tolerant strain of Bacillus megaterium, previously isolated from formation waters from the McElmo Dome CO field, to produce branched alcohols that have potential use as biofuels.

View Article and Find Full Text PDF
Article Synopsis
  • Bordetella bronchiseptica can infect both mammals and birds.
  • The study presents genome sequences from 53 different isolates of the bacteria found in various land and water animals.
  • This research will help scientists learn more about how the bacteria evolve, adapt to different hosts, and its ability to cause disease.
View Article and Find Full Text PDF

Whooping cough remains a significant disease worldwide and its re-emergence in highly vaccinated populations has been attributed to a combination of imperfect vaccines and evolution of the pathogen. The focus of this study was to examine the role of IL-1α/β and the inflammasome in generation of the interleukin-1 (IL-1) response, which is required for the clearance of Bordetella pertussis. We show that IL-1β but not IL-1α is required for mediating the clearance of B.

View Article and Find Full Text PDF

Pathogen transmission cycles require many steps: initial colonization, growth and persistence, shedding, and transmission to new hosts. Alterations in the membrane components of the bacteria, including lipid A, the membrane anchor of lipopolysaccharide, could affect any of these steps via its structural role protecting bacteria from host innate immune defenses, including antimicrobial peptides and signaling through Toll-like receptor 4 (TLR4). To date, lipid A has been shown to affect only the within-host dynamics of infection, not the between-host dynamics of transmission.

View Article and Find Full Text PDF

Before contacting host tissues, invading pathogens directly or indirectly interact with host microbiota, but the effects of such interactions on the initial stages of infection are poorly understood. Bordetella pertussis is highly infectious among humans but requires large doses to colonize rodents, unlike a closely related zoonotic pathogen, Bordetella bronchiseptica, raising important questions about the contributions of bacterial competition to initial colonization and host selection. We observed that <100 colony-forming units (CFU) of B.

View Article and Find Full Text PDF

Type VI Secretion Systems (T6SSs) have been identified in numerous gram-negative pathogens, but the lack of a natural host infection model has limited analysis of T6SS contributions to infection and pathogenesis. Here, we describe disruption of a gene within locus encoding a putative T6SS in Bordetella bronchiseptica strain RB50, a respiratory pathogen that circulates in a broad range of mammals, including humans, domestic animals, and mice. The 26 gene locus encoding the B.

View Article and Find Full Text PDF

IL-6, a pleiotropic cytokine primarily produced by the innate immune system, has been implicated in the development of acquired immune responses, though its roles are largely undefined and may vary in the context of different diseases. Using a murine model of infection, we established that IL-6 influences the adaptive immune responses against the endemic human respiratory pathogen Bordetella pertussis. IL-6 was induced in the lungs of C57BL/6 mice by B.

View Article and Find Full Text PDF

Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR-γ) has been shown to be immunoregulatory in autoimmune diseases by inhibiting production of a number of inflammatory mediators. We investigated whether PPAR-γ gene deletion in hematopoietic cells would alter disease pathogenesis in the antiglomerular basement membrane (anti-GBM) mouse model. PPAR-γ(+/+) and PPAR-γ(-/-) mice were immunized with rabbit antimouse GBM antibodies and lipopolysaccharide and evaluated for two weeks.

View Article and Find Full Text PDF