Publications by authors named "Sarah Moreno"

While significant advances have been made in understanding renal pathophysiology, less is known about the role of glycosphingolipid (GSL) metabolism in driving organ dysfunction. Here, we used a small molecule inhibitor of glucosylceramide synthase to modulate GSL levels in three mouse models of distinct renal pathologies: Alport syndrome (Col4a3 KO), polycystic kidney disease (Nek8), and steroid-resistant nephrotic syndrome (Nphs2 cKO). At the tissue level, we identified a core immune-enriched transcriptional signature that was shared across models and enriched in human polycystic kidney disease.

View Article and Find Full Text PDF

Pathological fibrosis is a significant complication of surgical procedures resulting from the accumulation of excess collagen at the site of repair which can compromise the tissue architecture and severely impede the function of the affected tissue. Few prophylactic treatments exist to counteract this process; however, the use of amniotic membrane allografts has demonstrated promising clinical outcomes. This study aimed to identify the underlying mechanism of action by utilizing relevant models that accurately represent the pathophysiology of the disease state.

View Article and Find Full Text PDF

The reparative properties of amniotic membrane allografts are well-suited for a broad spectrum of specialties. Further enhancement of their utility can be achieved by designing to the needs of each application through the development of novel processing techniques and tissue configurations. As such, this study evaluated the material characteristics and biological properties of two PURION processed amniotic membrane products, a lyophilized human amnion, intermediate layer, and chorion membrane (LHACM) and a dehydrated human amnion, chorion membrane (DHACM).

View Article and Find Full Text PDF

Thiopurines are in widespread clinical use for the treatment of immunological disorders and certain cancers. However, treatment failure due to resistance or adverse drug reactions are common, asking for new therapeutic strategies. We investigated the potential of 6-thioguanosine monophosphate (6sGMP) prodrugs to overcome resistance to 6-thioguanine.

View Article and Find Full Text PDF

Azides are versatile bioorthogonal reporter moieties that are commonly used for site-specific labeling and functionalization of RNA to probe its biology. The preparation of azido modified nucleic acids by solid-phase synthesis is problematic due to the inherent reactivity of P(III) species with azides according to the Staudinger reaction. Various strategies have been developed to bypass this limitation and are often time-consuming, low-yielding and labor-intensive.

View Article and Find Full Text PDF

Metabolic labeling has emerged as a powerful tool to endow RNA with reactive handles allowing for subsequent chemical derivatization and processing. Recently, thiolated nucleosides, such as 4-thiouridine (4sU), have attracted great interest in metabolic labeling-based RNA sequencing approaches (TUC-seq, SLAM-seq, TimeLapse-seq) to study cellular RNA expression and decay dynamics. For these and other applications ( PAR-CLIP), thus far only the naked nucleoside 4sU has been applied.

View Article and Find Full Text PDF

Unlabelled: The growing interest in 3-methylcytidine (mC) originates from the recent discoveries of mC modified tRNAs in humans as well as its intensively debated occurrence in mRNA. Moreover, mC formation can be catalyzed by RNA without the assistance of proteins as has been demonstrated for a naturally occurring riboswitch fold using the methylated form of its cognate ligand as cofactor. Additionally, new RNA sequencing methods have been developed to detect this modification in transcriptome-wide manner.

View Article and Find Full Text PDF

Excessive fibrosis affects more than 100 million patients yearly, leading to the accumulation of extracellular matrix that compromises tissue architecture and impedes its function. Intrinsic properties of the amniotic membrane have alluded to its potential to inhibit excessive fibrosis; therefore, this study aimed to investigate the effects of dehydrated human amnion/chorion membrane (dHACM) on dermal fibroblasts and their role in fibrotic pathways. Human dermal fibroblasts were stimulated with TGFβ1, triggering myofibroblast-like characteristics in vitro.

View Article and Find Full Text PDF

A naturally occurring riboswitch can utilize 7-aminomethyl- -methyl-7-deazaguanine (mpreQ) as cofactor for methyl group transfer resulting in cytosine methylation. This recently discovered riboswitch-ribozyme activity opens new avenues for the development of RNA labeling tools based on tailored -alkylated preQ derivatives. Here, we report a robust synthesis for this class of pyrrolo[2,3-]pyrimidines starting from readily accessible -pivaloyl-protected 6-chloro-7-cyano-7-deazaguanine.

View Article and Find Full Text PDF

Tendon injuries are among the most common ailments of the musculoskeletal system. Prolonged inflammation and persistent vasculature are common complications associated with poor healing. Damaged tendon, replaced with scar tissue, never completely regains the native structural or biomechanical properties.

View Article and Find Full Text PDF

Canonical Wnt signaling is a major pathway known to regulate diverse physiological processes in multicellular organisms. Signaling is tightly regulated by feedback mechanisms; however, persistent dysregulation of this pathway is implicated in the progression of multiple disease states. In this study, proteomic analysis identified endogenous Wnt antagonists in micronized dehydrated human amnion/chorion membrane (μdHACM); thereby, prompting a study to further characterize the intrinsic properties of μdHACM as it relates to Wnt activity, in vitro.

View Article and Find Full Text PDF

Methylation is a prevalent post-transcriptional modification encountered in coding and non-coding RNA. For RNA methylation, cells use methyltransferases and small organic substances as methyl-group donors, such as S-adenosylmethionine (SAM). SAM and other nucleotide-derived cofactors are viewed as evolutionary leftovers from an RNA world, in which riboswitches have regulated, and ribozymes have catalyzed essential metabolic reactions.

View Article and Find Full Text PDF

Bardet-Biedl syndrome (BBS) is a pleiotropic autosomal recessive ciliopathy affecting multiple organs. The development of potential disease-modifying therapy for BBS will require concurrent targeting of multi-systemic manifestations. Here, we show for the first time that monosialodihexosylganglioside accumulates in Bbs2-/- cilia, indicating impairment of glycosphingolipid (GSL) metabolism in BBS.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKDs) comprise a subgroup of ciliopathies characterized by the formation of fluid-filled kidney cysts and progression to end-stage renal disease. A mechanistic understanding of cystogenesis is crucial for the development of viable therapeutic options. Here, we identify CDK5, a kinase active in post mitotic cells, as a new and important mediator of PKD progression.

View Article and Find Full Text PDF

Background And Purpose: The colonic surface epithelium produces acetylcholine, released after the binding of propionate to GPCRs for this short-chain fatty acid (SCFA). This epithelial acetylcholine then induces anion secretion via stimulation of acetylcholine receptors. The key enzyme responsible for acetylcholine synthesis, choline acetyltransferase, is known to be unselective as regards the fatty acid used for esterification of choline.

View Article and Find Full Text PDF

Development of a disease-modifying therapy to treat autosomal dominant polycystic kidney disease (ADPKD) requires well-characterized preclinical models that accurately reflect the pathology and biochemical changes associated with the disease. Using a Pkd1 conditional knockout mouse, we demonstrate that subtly altering the timing and extent of Pkd1 deletion can have a significant impact on the origin and severity of kidney cyst formation. Pkd1 deletion on postnatal day 1 or 2 results in cysts arising from both the cortical and medullary regions, whereas deletion on postnatal days 3-8 results in primarily medullary cyst formation.

View Article and Find Full Text PDF

Mutations in interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene have been associated with non-syndromic intellectual disability (ID) and autism spectrum disorder. This protein interacts with synaptic partners like PSD-95 and PTPδ, regulating the formation and function of excitatory synapses. The aim of this work was to characterize the synaptic consequences of three IL1RAPL1 mutations, two novel causing the deletion of exon 6 (Δex6) and one point mutation (C31R), identified in patients with ID.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) and other forms of PKD are associated with dysregulated cell cycle and proliferation. Although no effective therapy for the treatment of PKD is currently available, possible mechanism-based approaches are beginning to emerge. A therapeutic intervention targeting aberrant cilia-cell cycle connection using CDK-inhibitor R-roscovitine showed effective arrest of PKD in jck and cpk models that are not orthologous to human ADPKD.

View Article and Find Full Text PDF

Patients affected by bipolar disorder (BD) frequently report abnormalities in sleep/wake cycles. In addition, they showed abnormal oscillating melatonin secretion, a key regulator of circadian rhythms and sleep patterns. The acetylserotonin O-methyltransferase (ASMT) is a key enzyme of the melatonin biosynthesis and has recently been associated with psychiatric disorders such as autism spectrum disorders and depression.

View Article and Find Full Text PDF

Background: Intellectual disability (ID) is frequently associated with sleep disorders. Treatment with melatonin demonstrated efficacy, suggesting that, at least in a subgroup of patients, the endogenous melatonin level may not be sufficient to adequately set the sleep-wake cycles. Mutations in ASMT gene, coding the last enzyme of the melatonin pathway have been reported as a risk factor for autism spectrum disorders (ASD), which are often comorbid with ID.

View Article and Find Full Text PDF

Mental retardation (MR) affects approximately 2% of the population. About 10% of all MR cases result from defects of X-linked genes. Mutations in most of more than 20 known genes causing nonspecific form of X-linked MR (MRX) are very rare and may account for less than 0.

View Article and Find Full Text PDF

Sevelamer hydrochloride, a noncalcium phosphate binder, has been shown to reduce coronary artery and aortic calcification, and to improve trabecular bone mineral density in hemodialysis patients with chronic kidney disease. Here, we examined whether sevelamer given orally for 12 wk with normal food could restore bone volume (BV) and strength in aged ovariectomized (OVX) rats starting at 4 wk after OVX. Dual-energy x-ray absorptiometry, microcomputerized tomography, and bone histomorphometry analyses showed that OVX animals receiving sevelamer had increased trabecular BV (51%), trabecular number (43%), trabecular thickness (9%), cortical thickness (16%), mineral apposition rate (103%), bone formation rate (25%), and enhanced cortical and trabecular bone mechanical strength as compared with OVX rats.

View Article and Find Full Text PDF