Publications by authors named "Sarah Misenko"

The G2/M checkpoint inhibits mitotic entry upon DNA damage, thereby preventing segregation of broken chromosomes and preserving genome stability. The tumor suppressor proteins BRCA1, PALB2 and BRCA2 constitute a BRCA1-PALB2-BRCA2 axis that is essential for homologous recombination (HR)-based DNA doublestrand break repair. Besides HR, BRCA1 has been implicated in both the initial activation and the maintenance of the G2/M checkpoint, while BRCA2 and PALB2 have been shown to be critical for its maintenance.

View Article and Find Full Text PDF

Purpose: DNA double-strand breaks (DSBs) can be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). We demonstrate the selectivity of VX-984, a DNA-PK inhibitor, using assays not previously reported.

Experimental Design: The class switch recombination assay (CSR) in primary B cells was used to measure efficiency of NHEJ.

View Article and Find Full Text PDF

'BRCAness' is a term used to describe cancer cells that behave similarly to tumors with BRCA1 or BRCA2 mutations. The BRCAness phenotype is associated with hypersensitivity to chemotherapy agents including PARP inhibitors, which are a promising class of recently-licensed anti-cancer treatments. This hypersensitivity arises because of a deficiency in the homologous recombination (HR) pathway for DNA double-strand break repair.

View Article and Find Full Text PDF

The gene product, BLM, is a RECQ helicase that is involved in DNA replication and repair of DNA double-strand breaks by the homologous recombination (HR) pathway. During HR, BLM has both pro- and anti-recombinogenic activities, either of which may contribute to maintenance of genomic integrity. We find that in cells expressing a mutant version of BRCA1, an essential HR factor, ablation of rescues genomic integrity and cell survival in the presence of DNA double-strand breaks.

View Article and Find Full Text PDF

BRCA1 mutations strongly predispose affected individuals to breast and ovarian cancer, but the mechanism by which BRCA1 acts as a tumor suppressor is not fully understood. Homozygous deletion of exon 2 of the mouse Brca1 gene normally causes embryonic lethality, but we show that exon 2-deleted alleles of Brca1 are expressed as a mutant isoform that lacks the N-terminal RING domain. This "RING-less" BRCA1 protein is stable and efficiently recruited to the sites of DNA damage.

View Article and Find Full Text PDF

Defective DNA repair leads to increased genomic instability, which is the root cause of mutations that lead to tumorigenesis. Analysis of the frequency and type of chromosome aberrations in different cell types allows defects in DNA repair pathways to be elucidated. Understanding mammalian DNA repair biology has been greatly helped by the production of mice with knockouts in specific genes.

View Article and Find Full Text PDF