Publications by authors named "Sarah McComic"

The dinoflagellate Karenia brevis is a causative agent of red tides in the Gulf of Mexico and generates a potent family of structurally related brevetoxins that act via the voltage-sensitive Na channel. This project was undertaken to better understand the neurotoxicology and kdr cross-resistance to brevetoxins in house flies by comparing the susceptible aabys strain to ALkdr (kdr) and JPskdr (super-kdr). When injected directly into the hemocoel, larvae exhibited rigid, non-convulsive paralysis consistent with prolongation of sodium channel currents, the known mechanism of action of brevetoxins.

View Article and Find Full Text PDF

Understanding the physiological and molecular regulation of tick feeding is necessary for developing intervention strategies to curb disease transmission by ticks. Pharmacological activation of ATP-gated inward rectifier potassium (K) channels reduced fluid secretion from isolated salivary gland and blood feeding in the lone star tick, Amblyomma americanum, yet the temporal expression pattern of K channel proteins remained unknown. K channels were highly expressed in type II and III acini in off-host stage and early feeding phase ticks, yet expression was reduced in later stages of feeding.

View Article and Find Full Text PDF

Inhibitors targeting the 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzyme are well established herbicides and HPPD is also a primary enzyme within the tyrosine metabolism pathway in hematophagous arthropods, which is an essential metaboilic pathway post-blood feeding to prevent tyrosine-mediated toxicity. The objective of this study was to characterize the toxicity of triketone, pyrazole, pyrazolone, isoxazole, and triazole herbicides that inhibit HPPD to blood-fed mosquitoes and ticks. Topical exposure of nitisinone to blood-fed Aedes aegypti yielded high toxicity with an LD of 3.

View Article and Find Full Text PDF

Mosquito-borne diseases are a significant threat to human health. The frequent and repetitive application of insecticides can result in the selection of resistant mosquito populations leading to product failures for reducing community disease transmission. It is important that new interventions are discovered and developed for reducing mosquito populations and, in turn, protecting human health.

View Article and Find Full Text PDF

The fall armyworm (FAW), Spodoptera frugiperda, is a global pest of multiple economically important row crops and the development of resistance to commercially available insecticidal classes has inhibited FAW control. Thus, there is a need to identify chemical scaffolds that can provide inspiration for the development of novel insecticides for FAW management. This study aimed to assess the sensitivity of central neurons and susceptibility of FAW to chloride channel modulators to establish a platform for repurposing existing insecticides or designing new chemicals capable of controlling FAW.

View Article and Find Full Text PDF

We previously extracted and purified a chromene amide from Amyris texana and found this scaffold is moderately insecticidal and thus, this study aimed to test the insecticidal properties of 13 synthetically derived chromene analogs to the fall armyworm (FAW, Spodoptera frugiperda). Microinjection of chromenes with alcohol or aldehydes substitutions at the meta position on the benzopyran moiety led to moderate toxicity that was approximately 2- to 3-fold less toxic when compared to permethrin, yet microinjection of differently substituted chromenes exhibited little to no toxicity. Similarly, chromenes with alcohol or aldehydes substitutions at the meta position on the benzopyran moiety were among the most toxic chromenes studied through ingested exposure.

View Article and Find Full Text PDF

Neurophysiological recordings were employed to quantify neuronal sensitivity to neurotoxic insecticides and assessed toxicity across field and laboratory fall armyworm (FAW) populations. Topical toxicity resistance ratios (RR) in field-collected FAW was 767-fold compared to laboratory strains and, importantly, a 1750-fold reduction in potency was observed for λ-cyhalothrin in neurophysiological assays. Field collected FAW were found to have a RR of 12 to chlorpyrifos when compared to the susceptible strain and was 8-fold less sensitive in neurophysiological assays.

View Article and Find Full Text PDF

Resistance mechanisms to synthetic insecticides often include point mutations and increased expression of genes encoding detoxification enzymes. Since pyrethroids are the main adulticides used against Aedes aegypti, which vectors pathogens such as Zika virus, understanding resistance to this insecticide class is of significant relevance. We focused on adenosine triphosphate (ATP)-binding cassette (ABC) transporters in the pyrethroid-resistant Puerto Rico (PR) strain of Ae.

View Article and Find Full Text PDF