Numerous Deep Learning (DL) classification models have been developed for a large spectrum of medical image analysis applications, which promises to reshape various facets of medical practice. Despite early advances in DL model validation and implementation, which encourage healthcare institutions to adopt them, a fundamental questions remain: how can these models effectively handle domain shift? This question is crucial to limit DL models performance degradation. Medical data are dynamic and prone to domain shift, due to multiple factors.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Federated learning (FL) is a machine learning framework that allows remote clients to collaboratively learn a global model while keeping their training data localized. It has emerged as an effective tool to solve the problem of data privacy protection. In particular, in the medical field, it is gaining relevance for achieving collaborative learning while protecting sensitive data.
View Article and Find Full Text PDFIndependent validation studies of automatic diabetic retinopathy screening systems have recently shown a drop of screening performance on external data. Beyond diabetic retinopathy, this study investigates the generalizability of deep learning (DL) algorithms for screening various ocular anomalies in fundus photographs, across heterogeneous populations and imaging protocols. The following datasets are considered: OPHDIAT (France, diabetic population), OphtaMaine (France, general population), RIADD (India, general population) and ODIR (China, general population).
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2022
Age-related macular degeneration (AMD) is the leading cause of visual impairment among elderly in the world. Early detection of AMD is of great importance, as the vision loss caused by this disease is irreversible and permanent. Color fundus photography is the most cost-effective imaging modality to screen for retinal disorders.
View Article and Find Full Text PDFSignificance: Screening for ocular anomalies using fundus photography is key to prevent vision impairment and blindness. With the growing and aging population, automated algorithms that can triage fundus photographs and provide instant referral decisions are relevant to scale-up screening and face the shortage of ophthalmic expertise.
Purpose: This study aimed to develop a deep learning algorithm that detects any ocular anomaly in fundus photographs and to evaluate this algorithm for "normal versus anomalous" eye examination classification in the diabetic and general populations.