Publications by authors named "Sarah M Tschampel"

A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field.

View Article and Find Full Text PDF

The inclusion of zero-mass point charges around electronegative atoms, such as oxygen, within molecular mechanical force fields is known to improve hydrogen-bonding directionality. In parallel, inclusion of lone-pairs (LPs) in the TIP5P water model increased its ability to reproduce both gas-phase and condensed-phase properties over its non-LP predecessor, TIP3P. Currently, most biomolecular parameter sets compute partial atomic charges via fitting of the classical molecular electrostatic potential (MEP) to the quantum mechanical MEP.

View Article and Find Full Text PDF

Water-mediated interactions play a key role in carbohydrate-lectin binding, where the interactions involve a conserved water that is separated from the bulk solvent and present a bridge between the side chains of the protein and the carbohydrate ligand. To apply quantum mechanical methods to examine the role of conserved waters, we present an analysis in which the relevant carbohydrate atoms are modeled by methanol, and in which the protein is replaced by a limited number of amino acid side chains. Clusters containing a conserved water and a representative amino acid fragment were also examined to determine the influence of amino acid side chains on interaction energies.

View Article and Find Full Text PDF

We have performed a series of first-principles electronic structure calculations to examine the reaction pathways and the corresponding free energy barriers for the ester hydrolysis of protonated cocaine in its chair and boat conformations. The calculated free energy barriers for the benzoyl ester hydrolysis of protonated chair cocaine are close to the corresponding barriers calculated for the benzoyl ester hydrolysis of neutral cocaine. However, the free energy barrier calculated for the methyl ester hydrolysis of protonated cocaine in its chair conformation is significantly lower than for the methyl ester hydrolysis of neutral cocaine and for the dominant pathway of the benzoyl ester hydrolysis of protonated cocaine.

View Article and Find Full Text PDF

Asparagine-linked glycosylation, the co-translational covalent attachment of carbohydrates to asparagine side chains, has a major effect on the folding, stability, and function of many proteins. The carbohydrate composition in mature glycoproteins is heterogeneous due to modification of the initial oligosaccharide by glycosidases and glycosyltransferases during the glycoprotein passage through the endoplasmic reticulum and Golgi apparatus. Despite the diversity of carbohydrate structures, the core beta-D-(GlcNAc)(2) remains conserved in all N-linked glycoproteins.

View Article and Find Full Text PDF

The hydration behavior of two model disaccharides, methyl-alpha-D-maltoside (1) and methyl-alpha-D-isomaltoside (2), has been investigated by a comparative 10 ns molecular dynamics study. The detailed hydration of the two disaccharides was described using three force fields especially developed for modeling of carbohydrates in explicit solvent. To validate the theoretical results the two compounds were synthesized and subjected to 500 MHz NMR spectroscopy, including pulsed field gradient diffusion measurements (1: 4.

View Article and Find Full Text PDF