Publications by authors named "Sarah M Sparks"

Activated vascular wall macrophages can rapidly internalize modified lipoproteins and escalate the growth of atherosclerotic plaques. This article proposes a biomaterials-based therapeutic intervention for depletion of non-regulated cholesterol accumulation and inhibition of inflammation of macrophages. Macromolecules with high scavenger receptor (SR)-binding activity were investigated for SR-mediated delivery of agonists to cholesterol-trafficking nuclear liver-X receptors.

View Article and Find Full Text PDF

New materials that can bind and deliver oligonucleotides such as short interfering RNA (siRNA) without toxicity are greatly needed to fulfill the promise of therapeutic gene silencing. Amphiphilic macromolecules (AMs) were functionalized with linear ethyleneimines to create cationic AMs capable of complexing with siRNA. Structurally, the parent AM is formed from a mucic acid backbone whose tetra-hydroxy groups are alkylated with 12-carbon aliphatic chains to form the hydrophobic component of the macromolecule.

View Article and Find Full Text PDF

Amphiphilic macromolecules (AM) were electrostatically complexed with a 1:1 ratio of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) to form AM-lipid complexes with drug delivery applications. The complexes exist as AM-coated liposomes and their drug delivery properties can be tuned by altering the AM-lipid weight ratio. The complexation and tuning are achieved in a simple, efficient, and scalable manner.

View Article and Find Full Text PDF

A family of anionic nanoscale polymers based on amphiphilic macromolecules (AMs) was developed for controlled inhibition of highly oxidized low-density lipoprotein (hoxLDL) uptake by inflammatory macrophage cells, a process that triggers the escalation of a chronic arterial disease called atherosclerosis. The basic AM structure is composed of a hydrophobic portion formed from a mucic acid sugar backbone modified at the four hydroxyls with lauroyl groups conjugated to hydrophilic poly(ethylene glycol) (PEG). The AM structure-activity relationships were probed by synthesizing AMs with six key variables: length of the PEG chain, carboxylic acid location, type of anionic charge, number of anionic charges, rotational motion of the anionic group, and PEG architecture.

View Article and Find Full Text PDF

Background: The advancement of gene silencing via RNA interference is limited by the lack of effective short interfering RNA (siRNA) delivery vectors. Rational design of polymeric carriers has been complicated by the fact that most chemical modifications affect multiple aspects of the delivery process. In this work, the extent of primary amine acetylation of generation 5 poly(amidoamine) (PAMAM) dendrimers was studied as a modification for the delivery of siRNA to U87 malignant glioma cells.

View Article and Find Full Text PDF