Using a field to lab approach, mature deep-rooting traits in wheat were correlated to root phenotypes measured on young plants from controlled conditions. Mature deep-rooting root traits of 20 wheat genotypes at maturity were established via coring in three field trials across 2 years. Field traits were correlated to phenotypes expressed by the 20 genotypes after growth in four commonly used lab screens: (i) soil tubes for root emergence, elongation, length, and branching at four ages to 34 days after sowing (DAS); (ii) paper pouches 7 DAS and (iii) agar chambers for primary root (PR) number and angles at 8 DAS; and (iv) soil baskets for PR and nodal root (NR) number and angle at 42 DAS.
View Article and Find Full Text PDFMany rainfed wheat production systems are reliant on stored soil water for some or all of their water inputs. Selection and breeding for root traits could result in a yield benefit; however, breeding for root traits has traditionally been avoided due to the difficulty of phenotyping mature root systems, limited understanding of root system development and function, and the strong influence of environmental conditions on the phenotype of the mature root system. This paper outlines an international field selection program for beneficial root traits at maturity using soil coring in India and Australia.
View Article and Find Full Text PDFCharles Darwin founded root system architecture research in 1880 when he described a root bending with gravity. Curving, elongating, and branching are the three cellular processes in roots that underlie root architecture. Together they determine the distribution of roots through soil and time, and hence the plants' access to water and nutrients, and anchorage.
View Article and Find Full Text PDFPartial shoot submergence is considered less stressful than complete submergence of plants, as aerial contact allows gas exchange with the atmosphere. In situ microelectrode studies of the wetland plant Meionectes brownii showed that O(2) dynamics in the submerged stems and aquatic roots of partially submerged plants were similar to those of completely submerged plants, with internal O(2) concentrations in both organs dropping to less than 5 kPa by dawn regardless of submergence level. The anatomy at the nodes and the relationship between tissue porosity and rates of O(2) diffusion through stems were studied.
View Article and Find Full Text PDFBackground And Aims: A common response of wetland plants to flooding is the formation of aquatic adventitious roots. Observations of aquatic root growth are widespread; however, controlled studies of aquatic roots of terrestrial herbaceous species are scarce. Submergence tolerance and aquatic root growth and physiology were evaluated in two herbaceous, perennial wetland species Cotula coronopifolia and Meionectes brownii.
View Article and Find Full Text PDFA unique type of vernal pool are those formed on granite outcrops, as the substrate prevents percolation so that water accumulates in depressions when precipitation exceeds evaporation. The O(2) dynamics of small, shallow vernal pools with dense populations of Isoetes australis were studied in situ, and the potential importance of the achlorophyllous leaf bases to underwater net photosynthesis (P(N)) and radial O(2) loss to sediments is highlighted. O(2) microelectrodes were used in situ to monitor pO(2) in leaves, shallow sediments, and water in four vernal pools.
View Article and Find Full Text PDF• Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic roots during submergence.
View Article and Find Full Text PDF• Underwater photosynthesis by aquatic plants is often limited by low availability of CO(2), and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools.
View Article and Find Full Text PDFWhen completely submerged, the leaves of some species retain a surface gas film. Leaf gas films on submerged plants have recently been termed 'plant plastrons', analogous with the plastrons of aquatic insects. In aquatic insects, surface gas layers (i.
View Article and Find Full Text PDFIn flood-tolerant species, a common response to inundation is growth of adventitious roots into the water column. The capacity for these roots to become photosynthetically active has received scant attention. The experiments presented here show the aquatic adventitious roots of the flood-tolerant, halophytic stem-succulent, Tecticornia pergranulata (subfamily Salicornioideae, Chenopodiaceae) are photosynthetic and quantify for the first time the photosynthetic capacity of aquatic roots for a terrestrial species.
View Article and Find Full Text PDF