Publications by authors named "Sarah M Plucinsky"

Caveolin-1 is a 20.5 kDa integral membrane protein that is involved in a myriad of cellular processes including signal transduction, relieving mechano-stresses on the cell, endocytosis, and most importantly caveolae formation. As a consequence, there is intense interest in characterizing caveolin-1 structurally.

View Article and Find Full Text PDF

The purification of membrane proteins can be challenging due to their low solubility in conventional detergents and/or chaotropic solutions. The introduction of fusion systems that promote the formation of inclusion bodies has facilitated the over-expression of membrane proteins. In this protocol, we describe the use of perfluorooctanoic acid (PFOA) as an aid in the purification of highly hydrophobic membrane proteins expressed as inclusion bodies.

View Article and Find Full Text PDF

Caveolin-1 is an integral membrane protein that is the primary component of cell membrane invaginations called caveolae. While caveolin-1 is known to participate in a myriad of vital cellular processes, structural data on caveolin-1 of any kind is severely limited. In order to rectify this dearth, secondary structure analysis of a functional construct of caveolin-1, containing the intact C-terminal domain, was performed using NMR spectroscopy in lyso-myristoylphosphatidylglycerol micelles.

View Article and Find Full Text PDF

Caveolae are cholesterol-rich plasma membrane invaginations that are found in a plethora of cell types. They play many roles including signal transduction, endocytosis, and mechanoprotection. The most critical protein in caveolae is the integral membrane protein, caveolin, which has been shown to be necessary for caveolae formation, and governs the major functions attributed to caveolae.

View Article and Find Full Text PDF