Publications by authors named "Sarah M Parke"

Polyolefins with periodic unsaturation in the backbone chain are sought after for synthesizing chemically recyclable polymers or telechelic polyolefin macromonomers. Here we introduce a bottom-up synthesis of unsaturated high-density polyethylene (HDPE) via copolymerization of ethylene with dimethyl 7-oxabicyclo[2.2.

View Article and Find Full Text PDF

The synthesis of the first bismuth-containing macromolecules that exhibit phosphorescence in the solid state and in the presence of oxygen is reported. These red emissive high molecular weight polymers (>300 kDa) feature benzobismoles appended to a hydrocarbon scaffold, and were built via an efficient ring-opening metathesis (ROMP) protocol. Moreover, our general procedure readily allows for the formation of cross-linked networks and block copolymers.

View Article and Find Full Text PDF

A series of bismuth heterocycles, termed bismoles, were synthesized via the efficient metallacycle transfer (Bi/Zr exchange) involving readily accessible zirconacycles. The luminescence properties of three structurally distinct bismoles were explored in detail via time-integrated and time-resolved photoluminescence spectroscopy using ultrafast laser excitation. Moreover, time-dependent density functional theory computations were used to interpret the nature of fluorescence versus phosphorescence in these bismuth-containing heterocycles and to guide the future preparation of luminescent materials containing heavy inorganic elements.

View Article and Find Full Text PDF

This review article summarizes recent progress in the synthesis and optoelectronic properties of conjugated materials containing heavy main group elements from Group 13-16 as integral components. As will be discussed, the introduction of these elements can promote novel phosphorescent behavior and support desirable molecular and polymeric properties such as low optical band gaps and high charge mobilities for photovoltaic and thin film transistor applications.

View Article and Find Full Text PDF

Cytochrome P450 reductase (CPR) and methionine synthase reductase (MSR) transfer reducing equivalents from NADPH to FAD to FMN. In CPR, hydride transfer and interflavin electron transfer are kinetically coupled steps, but in MSR the two catalytic steps are represented by two distinct kinetic phases leading to transient formation of the FAD hydroquinone. In human CPR, His(322) forms a hydrogen-bond with the highly conserved Asp(677), a member of the catalytic triad.

View Article and Find Full Text PDF