Publications by authors named "Sarah M Miles"

Bitumen extraction in Alberta's oil sands region uses large volumes of water, leading to an abundance of oil sands process-affected water (OSPW). OSPW contains naphthenic acid fraction compounds (NAFCs) which have been found to contribute to OSPW toxicity. This study utilized a multistep treatment, coupling biological degradation with UV photocatalytic oxidation, and nutrient addition to boost the native microbial community's degradation capacity.

View Article and Find Full Text PDF

Development of Alberta's oil sands requires large volumes of water, leading to the abundance of oil sands process affected water (OSPW) that must be remediated prior to discharge or reuse. OSPW contains a variety of dissolved organic compounds, however naphthenic acids (NAs) have been found to contribute significantly to the toxicity of OSPW. A fungus, Trichoderma harzianum, isolated directly from OSPW, has previously demonstrated a high tolerance and capacity for growth in the presence of commercial NAs.

View Article and Find Full Text PDF

The expansion of oil sands has made remediation of oil sands process-affected water (OSPW) critical. As naphthenic acids (NAs) are the primary contributors to toxicity, remediation is required. Bioremediation by native microorganisms is potentially effective, however, toxicity of NAs towards native microorganisms is poorly understood.

View Article and Find Full Text PDF

Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization.

View Article and Find Full Text PDF