Publications by authors named "Sarah M McDonald"

Rotavirus is a well-studied RNA virus that causes severe gastroenteritis in children. During viral entry, the outer layer of the virion is shed, creating a double-layered particle (DLP) that is competent to perform viral transcription (i.e.

View Article and Find Full Text PDF

The rotavirus polymerase VP1 mediates all stages of viral RNA synthesis within the confines of subviral particles and while associated with the core shell protein VP2. Transcription (positive-strand RNA [+RNA] synthesis) by VP1 occurs within double-layered particles (DLPs), while genome replication (double-stranded RNA [dsRNA] synthesis) by VP1 occurs within assembly intermediates. VP2 is critical for VP1 enzymatic activity; yet, the mechanism by which the core shell protein triggers polymerase function remains poorly understood.

View Article and Find Full Text PDF

The fight against human disease requires a multidisciplinary scientific approach. Applying tools from seemingly unrelated areas, such as materials science and molecular biology, researchers can overcome long-standing challenges to improve knowledge of molecular pathologies. Here, custom-designed substrates composed of silicon nitride (SiN) are used to study the 3D attributes of tumor suppressor proteins that function in DNA repair events.

View Article and Find Full Text PDF

Group A rotaviruses (RVAs) are classified according to a nucleotide sequence-based system that assigns a genotype to each of the 11 double-stranded RNA (dsRNA) genome segments. For the segment encoding the VP1 polymerase, 22 genotypes (R1 to R22) are defined with an 83% nucleotide identity cutoff value. For the segment encoding the VP2 core shell protein, which is a functional VP1-binding partner, 20 genotypes (C1 to C20) are defined with an 84% nucleotide identity cutoff value.

View Article and Find Full Text PDF

Rotaviruses (RVs) can evolve through the process of reassortment, whereby the 11 double-stranded RNA genome segments are exchanged among strains during co-infection. However, reassortment is limited in cases where the genes or encoded proteins of co-infecting strains are functionally incompatible. In this study, we employed a helper virus-based reverse genetics system to identify NSP2 gene regions that correlate with restricted reassortment into simian RV strain SA11.

View Article and Find Full Text PDF

Temperature-sensitive () mutants of simian rotavirus (RV) strain SA11 have been previously created to investigate the functions of viral proteins during replication. One mutant, SA11-C, has a mutation that maps to the gene encoding the VP1 polymerase and shows diminished growth and RNA synthesis at 39°C compared to that at 31°C. In the present study, we sequenced all 11 genes of SA11-C, confirming the presence of an L138P mutation in the VP1 N-terminal domain and identifying 52 additional mutations in four other viral proteins (VP4, VP7, NSP1, and NSP2).

View Article and Find Full Text PDF

Shared VH1-46 gene usage has been described in B cells reacting to desmoglein 3 (Dsg3) in the autoimmune disease pemphigus vulgaris (PV), as well as B cells responding to rotavirus capsid protein VP6. In both diseases, VH1-46 B cells bearing few to no somatic mutations can recognize the disease Ag. This intriguing connection between an autoimmune response to self-antigen and an immune response to foreign Ag prompted us to investigate whether VH1-46 B cells may be predisposed to Dsg3-VP6 cross-reactivity.

View Article and Find Full Text PDF

Segmented RNA viruses are widespread in nature and include important human, animal and plant pathogens, such as influenza viruses and rotaviruses. Although the origin of RNA virus genome segmentation remains elusive, a major consequence of this genome structure is the capacity for reassortment to occur during co-infection, whereby segments are exchanged among different viral strains. Therefore, reassortment can create viral progeny that contain genes that are derived from more than one parent, potentially conferring important fitness advantages or disadvantages to the progeny virus.

View Article and Find Full Text PDF

Group A rotaviruses (RVAs) are 11-segmented, double-stranded RNA viruses and important causes of gastroenteritis in the young of many animal species. Previous studies have suggested that human Wa-like RVAs share a close evolutionary relationship with porcine RVAs. Specifically, the VP1-VP3 and NSP2-5/6 genes of these viruses are usually classified as genotype 1 with >81% nucleotide sequence identity.

View Article and Find Full Text PDF

Currently, there remains a critical need to develop real-time imaging resources for life sciences. Here, we demonstrate the use of high resolution in situ imaging to observe biological complexes in liquid at the nanoscale. Using a model virus system, we produced the first time-resolved videos of individual biological complexes moving in solution within an electron microscope.

View Article and Find Full Text PDF

The molecular mechanisms by which RNA viruses coordinate their transcriptional activities are not fully understood. For rotavirus, an important pediatric gastroenteric pathogen, transcription occurs within a double-layered particle that encloses the viral genome. To date, there remains very little structural information available for actively-transcribing rotavirus double-layered particles, which could provide new insights for antiviral development.

View Article and Find Full Text PDF

Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs.

View Article and Find Full Text PDF

Unlabelled: Rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses that cause severe gastroenteritis in children. In addition to an error-prone genome replication mechanism, RVs can increase their genetic diversity by reassorting genes during host coinfection. Such exchanges allow RVs to acquire advantageous genes and adapt in the face of selective pressures.

View Article and Find Full Text PDF

Unlabelled: Rotaviruses (RVs) are leading causes of severe diarrhea and vomiting in infants and young children. RVs with G10P[11] genotype specificity have been associated with symptomatic and asymptomatic neonatal infections in Vellore, India. To identify possible viral genetic determinants responsible for differences in symptomology, the genome sequences of G10P[11] RVs in stool samples of 19 neonates with symptomatic infections and 20 neonates with asymptomatic infections were determined by Sanger and next-generation sequencing.

View Article and Find Full Text PDF

Researchers regularly use Transmission Electron Microscopes (TEMs) to examine biological entities and to assess new materials. Here, we describe an additional application for these instruments- viewing viral assemblies in a liquid environment. This exciting and novel method of visualizing biological structures utilizes a recently developed microfluidic-based specimen holder.

View Article and Find Full Text PDF

Unlabelled: Group A rotaviruses (RVs) remain a leading cause of childhood gastroenteritis worldwide. Although the G/P types of locally circulating RVs can vary from year to year and differ depending upon geographical location, those with G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8] specificities typically dominate. Little is known about the evolution and diversity of G2P[4] RVs and the possible role that widespread vaccine use has had on their increased frequency of detection.

View Article and Find Full Text PDF

Understanding the fundamental properties of macromolecules has enhanced the development of emerging technologies used to improve biomedical research. Currently, there is a critical need for innovative platforms that can illuminate the function of biomedical reagents in a native environment. To address this need, we have developed an in situ approach to visualize the dynamic behavior of biomedically relevant macromolecules at the nanoscale.

View Article and Find Full Text PDF

Group A rotaviruses (RVs) are eleven-segmented, double-stranded RNA viruses and important causes of severe diarrhea in children. A full-genome classification system is readily used to describe the genetic makeup of individual RV strains. In this system, each viral gene is assigned a specific genotype based upon its nucleotide sequence and established percent identity cut-off values.

View Article and Find Full Text PDF

RNA viruses are ubiquitous in nature, infecting every known organism on the planet. These viruses can also be notorious human pathogens with significant medical and economic burdens. Central to the lifecycle of an RNA virus is the synthesis of new RNA molecules, a process that is mediated by specialized virally encoded enzymes called RNA-dependent RNA polymerases (RdRps).

View Article and Find Full Text PDF

The triple-layered rotavirus virion encases an 11-segmented, dsRNA genome and 11-12 copies of the viral polymerase (VP1). VP1 transcribes and replicates the genome while tethered beneath the VP2 core shell. Genome replication (i.

View Article and Find Full Text PDF