Publications by authors named "Sarah M Laske"

Borealization is a type of community reorganization where Arctic specialists are replaced by species with more boreal distributions in response to climatic warming. The process of borealization is often exemplified by the northward range expansions and subsequent proliferation of boreal species on the Pacific and Atlantic inflow Arctic shelves (i.e.

View Article and Find Full Text PDF

The amount of mercury (Hg) in Arctic lake food webs is, and will continue to be, affected by rapid, ongoing climate change. At warmer temperatures, fish require more energy to sustain growth; changes in their metabolic rates and consuming prey with potentially higher Hg concentrations could result in increased Hg accumulation. To examine the potential implications of climate warming on forage fish Hg accumulation in Arctic lakes, we quantified growth and Hg accumulation in Ninespine Stickleback Pungitius pungitius under different temperature and diet scenarios using bioenergetics models.

View Article and Find Full Text PDF

Chinook salmon () declines are widespread and may be attributed, at least in part, to warming river temperatures. Water temperatures in the Yukon River and tributaries often exceed 18°C, a threshold commonly associated with heat stress and elevated mortality in Pacific salmon. Untangling the complex web of direct and indirect physiological effects of heat stress on salmon is difficult in a natural setting with innumerable system challenges but is necessary to increase our understanding of both lethal and sublethal impacts of heat stress on populations.

View Article and Find Full Text PDF

Manipulative experiments provide stronger evidence for identifying cause-and-effect relationships than correlative studies, but protocols for implementing temperature manipulations are lacking for large species in remote settings. We developed an experimental protocol for holding adult Chinook salmon () and exposing them to elevated temperature treatments. The goal of the experimental protocol was to validate heat stress biomarkers by increasing river water temperature from ambient (~14°C) to a treatment temperature of 18°C or 21°C and then maintain the treatment temperature over 4 hours within a range of ±1.

View Article and Find Full Text PDF