This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.
View Article and Find Full Text PDFHundreds of different mathematical models have been proposed for describing electrophysiology of various cell types. These models are quite complex (nonlinear systems of typically tens of ODEs and sometimes hundreds of parameters) and software packages such as the Cancer, Heart and Soft Tissue Environment (Chaste) C++ library have been designed to run simulations with these models in isolation or coupled to form a tissue simulation. The complexity of many of these models makes sharing and translating them to new simulation environments difficult.
View Article and Find Full Text PDFThis special issue of the contains updated specifications of COMBINE standards in systems and synthetic biology. The 2021 special issue presents four updates of standards: Synthetic Biology Open Language Visual Version 2.3, Synthetic Biology Open Language Visual Version 3.
View Article and Find Full Text PDFSystems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose.
View Article and Find Full Text PDFBiological models often contain elements that have inexact numerical values, since they are based on values that are stochastic in nature or data that contains uncertainty. The Systems Biology Markup Language (SBML) Level 3 Core specification does not include an explicit mechanism to include inexact or stochastic values in a model, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactic constructs. The SBML Distributions package for SBML Level 3 adds the necessary features to allow models to encode information about the distribution and uncertainty of values underlying a quantity.
View Article and Find Full Text PDFRule-based modeling is an approach that permits constructing reaction networks based on the specification of rules for molecular interactions and transformations. These rules can encompass details such as the interacting sub-molecular domains and the states and binding status of the involved components. Conceptually, fine-grained spatial information such as locations can also be provided.
View Article and Find Full Text PDFThis special issue of the Journal of Integrative Bioinformatics presents papers related to the 10th COMBINE meeting together with the annual update of COMBINE standards in systems and synthetic biology.
View Article and Find Full Text PDFThis paper presents a report on outcomes of the 10th Computational Modeling in Biology Network (COMBINE) meeting that was held in Heidelberg, Germany, in July of 2019. The annual event brings together researchers, biocurators and software engineers to present recent results and discuss future work in the area of standards for systems and synthetic biology. The COMBINE initiative coordinates the development of various community standards and formats for computational models in the life sciences.
View Article and Find Full Text PDFWikidata is a community-maintained knowledge base that has been assembled from repositories in the fields of genomics, proteomics, genetic variants, pathways, chemical compounds, and diseases, and that adheres to the FAIR principles of findability, accessibility, interoperability and reusability. Here we describe the breadth and depth of the biomedical knowledge contained within Wikidata, and discuss the open-source tools we have built to add information to Wikidata and to synchronize it with source databases. We also demonstrate several use cases for Wikidata, including the crowdsourced curation of biomedical ontologies, phenotype-based diagnosis of disease, and drug repurposing.
View Article and Find Full Text PDFComputational modelling has become increasingly common in life science research. To provide a platform to support universal sharing, easy accessibility and model reproducibility, BioModels (https://www.ebi.
View Article and Find Full Text PDFThis special issue of the Journal of Integrative Bioinformatics presents an overview of COMBINE standards and their latest specifications. The standards cover representation formats for computational modeling in synthetic and systems biology and include BioPAX, CellML, NeuroML, SBML, SBGN, SBOL and SED-ML. The articles in this issue contain updated specifications of SBGN Process Description Level 1 Version 2, SBML Level 3 Core Version 2 Release 2, SBOL Version 2.
View Article and Find Full Text PDFComputational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others.
View Article and Find Full Text PDFMany software tools provide facilities for depicting reaction network diagrams in a visual form. Two aspects of such a visual diagram can be distinguished: the layout (i.e.
View Article and Find Full Text PDFStandards are essential to the advancement of Systems and Synthetic Biology. COMBINE provides a formal body and a centralised platform to help develop and disseminate relevant standards and related resources. The regular special issue of the Journal of Integrative Bioinformatics aims to support the exchange, distribution and archiving of these standards by providing unified, easily citable access.
View Article and Find Full Text PDFComputational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others.
View Article and Find Full Text PDFUnlabelled: MATLAB is popular in biological research for creating and simulating models that use ordinary differential equations (ODEs). However, sharing or using these models outside of MATLAB is often problematic. A community standard such as Systems Biology Markup Language (SBML) can serve as a neutral exchange format, but translating models from MATLAB to SBML can be challenging-especially for legacy models not written with translation in mind.
View Article and Find Full Text PDFComputational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others.
View Article and Find Full Text PDFQuantitative methods for modelling biological networks require an in-depth knowledge of the biochemical reactions and their stoichiometric and kinetic parameters. In many practical cases, this knowledge is missing. This has led to the development of several qualitative modelling methods using information such as, for example, gene expression data coming from functional genomic experiments.
View Article and Find Full Text PDFComputational models can help researchers to interpret data, understand biological function, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that can be exchanged between different software systems. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others.
View Article and Find Full Text PDFBackground: Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing.
View Article and Find Full Text PDFThis chapter describes the Systems Biology Markup Language (SBML) from its origins. It describes the rationale behind and importance of having a common language when it comes to representing models. This chapter mentions the development of SBML and outlines the structure of an SBML model.
View Article and Find Full Text PDFUnlabelled: LibSBML is an application programming interface library for reading, writing, manipulating and validating content expressed in the Systems Biology Markup Language (SBML) format. It is written in ISO C and C++, provides language bindings for Common Lisp, Java, Python, Perl, MATLAB and Octave, and includes many features that facilitate adoption and use of both SBML and the library. Developers can embed libSBML in their applications, saving themselves the work of implementing their own SBML parsing, manipulation and validation software.
View Article and Find Full Text PDF