Publications by authors named "Sarah M Fantin"

Peripheral myelin protein (PMP22) is an integral membrane protein that traffics inefficiently even in wild-type (WT) form, with only 20% of the WT protein reaching its final plasma membrane destination in myelinating Schwann cells. Misfolding of PMP22 has been identified as a key factor in multiple peripheral neuropathies, including Charcot-Marie-Tooth disease and Dejerine-Sottas syndrome. While biophysical analyses of disease-associated PMP22 mutants show altered protein stabilities, leading to reduced surface trafficking and loss of PMP22 function, it remains unclear how destabilization of PMP22 mutations causes mistrafficking.

View Article and Find Full Text PDF

The KCNQ1 voltage-gated potassium channel regulates the repolarization of cardiac cells, and a plurality of point mutations in its voltage-sensing domain (VSD) are associated with toxic gain or loss of pore function, resulting in disease. As is the case with many disease-associated membrane proteins, there are hundreds of human variants of interest identified for KCNQ1; however, a significant portion of these variants have not been characterized in relation to their functional and disease associations. Additionally, as the VSD consists of four transmembrane helices, studies into dynamic structural differences among KCNQ1 VSD variants are hindered by the current limitations and deficits in the high-resolution structure determination of membrane proteins.

View Article and Find Full Text PDF

How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that phingomyelin and hlesterol-ich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by -dodecyl-β-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios.

View Article and Find Full Text PDF

Membrane proteins represent most current therapeutic targets, yet remain understudied due to their insolubility in aqueous solvents and generally low yields during purification and expression. Ion mobility-mass spectrometry and collision induced unfolding experiments have recently garnered attention as methods capable of directly detecting and quantifying ligand binding within a wide range of membrane protein systems. Despite prior success, ionized surfactant often creates chemical noise patterns resulting in significant challenges surrounding the study of small membrane protein-ligand complexes.

View Article and Find Full Text PDF

Ion mobility-mass spectrometry (IM-MS) has become an important addition to the structural biology toolbox, but separating closely related protein conformations remain challenging. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing iso-cross-sectional protein and protein complex ions through their distinct unfolding pathways in the gas phase. The speed and sensitivity of CIU analyses, coupled with their information-rich data sets, have resulted in the rapid growth of CIU for applications, ranging from the structural assessment of protein complexes to the characterization of biotherapeutics.

View Article and Find Full Text PDF