Publications by authors named "Sarah M Dickerson"

This study examined the effects of varying protein sources on apparent total tract digestibility, inflammatory markers, and fecal microbiota in Labrador Retrievers with historically poor stool quality. Thirty dogs (15 male, 15 female; aged 0.93 to 11.

View Article and Find Full Text PDF

While CRISPR interference (CRISPRi) systems have been widely implemented in pooled lentiviral screening, there has been limited use with synthetic guide RNAs for the complex phenotypic readouts enabled by experiments in arrayed format. Here we describe a novel deactivated Cas9 fusion protein, dCas9-SALL1-SDS3, which produces greater target gene repression than first or second generation CRISPRi systems when used with chemically modified synthetic single guide RNAs (sgRNAs), while exhibiting high target specificity. We show that dCas9-SALL1-SDS3 interacts with key members of the histone deacetylase and Swi-independent three complexes, which are the endogenous functional effectors of SALL1 and SDS3.

View Article and Find Full Text PDF

The CRISPR-Cas9 system has been adapted for transcriptional activation (CRISPRa) and several second-generation CRISPRa systems (including VPR, SunTag, and SAM) have been developed to recruit different transcriptional activators to a deactivated Cas9, which is guided to a transcriptional start site via base complementarity with a target guide RNA. Multiple studies have shown the benefit of CRISPRa using plasmid or lentiviral expressed guide RNA, but the use of synthetic guide RNA has not been reported. Here we demonstrate the effective use of synthetic guide RNA for gene activation via CRISPRa.

View Article and Find Full Text PDF

The herpes helicase-primase (UL5-UL8-UL52) very inefficiently unwinds double-stranded DNA. To better understand the mechanistic consequences of this inefficiency, we investigated protein displacement activity by UL5-UL8-UL52, as well as the impact of coupling DNA synthesis by the herpes polymerase with helicase activity. While the helicase can displace proteins bound to the lagging strand template, bound proteins significantly impede helicase activity.

View Article and Find Full Text PDF

Small molecule/DNA hybrids (SMDHs) have been considered as nanoscale building blocks for engineering 2D and 3D supramolecular DNA assembly. Herein, we report an efficient on-bead amide-coupling approach to prepare SMDHs with multiple oligodeoxynucleotide (ODN) strands. Our method is high yielding under mild and user-friendly conditions with various organic substrates and homo- or mixed-sequenced ODNs.

View Article and Find Full Text PDF

Neonatal exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) can interfere with hormone-sensitive developmental processes, including brain sexual differentiation. We hypothesized that disruption of these processes by gestational PCB exposure would be detectable as early as the day after birth (postnatal day (P) 1) through alterations in hypothalamic gene and protein expression. Pregnant Sprague-Dawley rats were injected twice, once each on gestational days 16 and 18, with one of the following: DMSO vehicle; the industrial PCB mixture Aroclor 1221 (A1221); a reconstituted mixture of the three most prevalent congeners found in humans, PCB138, PCB153, and PCB180; or estradiol benzoate (EB).

View Article and Find Full Text PDF

In mammals, sexual differentiation of the hypothalamus occurs during prenatal and early postnatal development due in large part to sex differences in hormones. These early organizational processes are critically important for the attainment and maintenance of adult reproductive functions. We tested the hypothesis that perinatal exposure to polychlorinated biphenyls (PCBs) that disrupt hormonal pathways would perturb reproductive maturation and the sexually dimorphic development of neuroendocrine systems in the preoptic area (POA).

View Article and Find Full Text PDF

Exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) causes functional deficits in neuroendocrine systems. We used an immortalized hypothalamic GT1-7 cell line, which synthesizes the neuroendocrine peptide gonadotropin-releasing hormone (GnRH), to examine the neurotoxic and endocrine disrupting effects of PCBs and their mechanisms of action. Cells were treated for 1, 4, 8, or 24 h with a range of doses of a representative PCB from each of three classes: coplanar (2,4,4',5-tetrachlorobiphenyl: PCB74), dioxin-like coplanar (2',3,4,4',5' pentachlorobiphenyl: PCB118), non-coplanar (2,2',4,4',5,5'-hexachlorobiphenyl: PCB153), or their combination.

View Article and Find Full Text PDF

Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug (+/-)-3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy'), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal reproductive axis of male rats.

View Article and Find Full Text PDF

Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with the normal function of an organism's endocrine system. Many EDCs are resistant to biodegradation, due to their structural stability, and persist in the environment. The focus of this review is on natural and artificial EDCs that act through estrogenic mechanisms to affect reproductive neuroendocrine systems.

View Article and Find Full Text PDF