Proc Natl Acad Sci U S A
June 2008
Storage of energy as triglyceride in large adipose-specific lipid droplets is a fundamental need in all mammals. Efficient sequestration of fat in adipocytes also prevents fatty acid overload in skeletal muscle and liver, which can impair insulin signaling. Here we report that the Cide domain-containing protein Cidea, previously thought to be a mitochondrial protein, colocalizes around lipid droplets with perilipin, a regulator of lipolysis.
View Article and Find Full Text PDFThe insulin-regulated glucose transporter GLUT4 is a key modulator of whole body glucose homeostasis, and its selective loss in adipose tissue or skeletal muscle causes insulin resistance and diabetes. Here we report an RNA interference-based screen of protein kinases expressed in adipocytes and identify four negative regulators of insulin-responsive glucose transport: the protein kinases PCTAIRE-1 (PCTK1), PFTAIRE-1 (PFTK1), IkappaB kinase alpha, and MAP4K4/NIK. Integrin-linked protein kinase was identified as a positive regulator of this process.
View Article and Find Full Text PDFInsulin stimulates glucose uptake in muscle and adipose cells by mobilizing intracellular membrane vesicles containing GLUT4 glucose transporter proteins to the plasma membrane. Here we show in live cultured adipocytes that intracellular membranes containing GLUT4-yellow fluorescent protein (YFP) move along tubulin-cyan fluorescent protein-labeled microtubules in response to insulin by a mechanism that is insensitive to the phosphatidylinositol 3 (PI3)-kinase inhibitor wortmannin. Insulin increased by several fold the observed frequencies, but not velocities, of long-range movements of GLUT4-YFP on microtubules, both away from and towards the perinuclear region.
View Article and Find Full Text PDFInsulin stimulates glucose uptake in muscle and adipocytes by signalling the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. The translocation of GLUT4 may involve signalling pathways that are both independent of and dependent on phosphatidylinositol-3-OH kinase (PI(3)K). This translocation also requires the actin cytoskeleton, and the rapid movement of GLUT4 along linear tracks may be mediated by molecular motors.
View Article and Find Full Text PDF