Publications by authors named "Sarah M Bass"

Article Synopsis
  • High mechanical loading induces temporary disruptions in cell membranes (PMD) that initiate a process called mechanotransduction, which is essential for bone adaptation.
  • The study hypothesized that disrupting a protein called β2-spectrin (Sptbn1), which supports cell structure, would increase membrane fragility, leading to altered responses in osteocytes (bone cells) under mechanical stress.
  • Results showed that disrupting Sptbn1 led to more PMD formation and slower repair rates in cells, impaired cell survival, and reduced bone thickening in response to mechanical loading, highlighting Sptbn1's crucial role in bone adaptation and cell response to stress.
View Article and Find Full Text PDF

A common challenge for exoskeleton control is discerning operator intent to provide seamless actuation of the device with the operator. One way to accomplish this is with joint angle estimation algorithms and multiple sensors on the human-machine system. However, the question remains of what can be accomplished with just one sensor.

View Article and Find Full Text PDF

Osteocytes experience plasma membrane disruptions (PMD) that initiate mechanotransduction both in vitro and in vivo in response to mechanical loading, suggesting that osteocytes use PMD to sense and adapt to mechanical stimuli. PMD repair is crucial for cell survival; antioxidants (e.g.

View Article and Find Full Text PDF