Publications by authors named "Sarah Lovelace"

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.

View Article and Find Full Text PDF

Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4 and CD8 T cells.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) against HIV-1 are promising immunotherapeutic agents for treatment of HIV-1 infection. bNAbs can be administered to SHIV-infected rhesus macaques to assess their anti-viral efficacy; however, their delivery into macaques often leads to rapid formation of anti-drug antibody (ADA) responses limiting such assessment. Here, we depleted B cells in five SHIV-infected rhesus macaques by pretreatment with a depleting anti-CD20 antibody prior to bNAb infusions to reduce ADA.

View Article and Find Full Text PDF

Wheelchair users have a higher risk of developing pressure ulcers due to prolonged seated pressure. Pressure ulcers can be painful, may require surgical intervention, and even become life-threatening if infection occurs. To prevent pressure ulcers from forming the patient must either offload themselves or rely on a caregiver to move them allowing pressure redistribution over the seated area.

View Article and Find Full Text PDF

Background: Immunomodulation by mesenchymal stromal cells (MSCs) is a potentially important therapeutic modality. MSCs suppress peripheral blood mononuclear cell (PBMC) proliferation in vitro, suggesting a mechanism for suppressing inflammatory responses in vivo. This study details the interactions of PBMCs and MSCs.

View Article and Find Full Text PDF

Background: There is broad interest in the use of cell therapies and cell products for treatment of a variety of diseases and problems. Of interest to the military, cellular therapies have the potential to confer tremendous benefit for treatment of both acute and chronic injuries. Although many different cell therapy products are currently under investigation, mesenchymal stromal cells (MSCs) are good candidates, based on their ability to respond to inflammation, limit vascular permeability, and modulate immune responses to injury.

View Article and Find Full Text PDF