Publications by authors named "Sarah Livingston"

Rexinoids are compounds that bind to the rexinoid X receptor (RXR) to modulate gene expression and have been proposed as a new class of therapeutics to treat Alzheimer's disease. Different rexinoids will initiate downstream effects that can be quite marked even though such compounds can be structurally similar and have comparable RXR binding affinities. RXR can both homo- and heterodimerize, and these protein-protein interactions and subsequent transactivating potential lead to differential gene expression, depending on the RXR dimeric partner, additional cofactors recruited, and downstream transcription factors that are up- or downregulated.

View Article and Find Full Text PDF

Bexarotene, a drug approved for treatment of cutaneous T-cell lymphoma (CTCL), is classified as a rexinoid by its ability to act as a retinoid X receptor (RXR) agonist with high specificity. Rexinoids are capable of inducing RXR homodimerization leading to the induction of apoptosis and inhibition of proliferation in human cancers. Numerous studies have shown that bexarotene is effective in reducing viability and proliferation in CTCL cell lines.

View Article and Find Full Text PDF

The hormonal vitamin D metabolite, 1,25-dihydroxyvitamin D [1,25(OH)D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand-controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D-regulated genes. Circulating 1,25(OH)D concentrations are governed by PTH, an inducer of renal D-hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor-23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop.

View Article and Find Full Text PDF

Mediated by the nuclear vitamin D receptor (VDR), the hormonally active vitamin D metabolite, 1,25-dihydroxyvitamin D (1,25D), is known to regulate expression of genes impacting calcium and phosphorus metabolism, the immune system, and behavior. Urolithin A, a nutrient metabolite derived from pomegranate, possibly acting through AMP kinase (AMPK) signaling, supports respiratory muscle health in rodents and longevity in by inducing oxidative damage-reversing genes and mitophagy. We show herein that urolithin A enhances transcriptional actions of 1,25D driven by co-transfected vitamin D responsive elements (VDREs), and dissection of this genomic effect in cell culture reveals: 1) urolithin A concentration-dependency, 2) occurrence with isolated natural VDREs, 3) nuclear receptor selectivity for VDR over ER, LXR and RXR, and 4) significant 3- to 13-fold urolithin A-augmentation of 1,25D-dependent mRNA encoding the widely expressed 1,25D-detoxification enzyme, CYP24A1, a benchmark vitamin D target gene.

View Article and Find Full Text PDF

Interferon-stimulated gene 15 (ISG15) is a 15 kDa protein induced by type I interferons (IFN-α and IFN-β) and is a member of the ubiquitin-like superfamily of proteins. The ISG15 pathway is highly expressed in various malignancies, including pancreatic ductal adenocarcinoma (PDAC), suggesting a potential role of the ISG15 pathway (free ISG15 and ISG15 conjugates) in pancreatic carcinogenesis. However, very little is known about how the ISG15 pathway may contribute to pancreatic tumorigenesis.

View Article and Find Full Text PDF