Selection by phage display is a popular and widely used technique for the discovery of recombinant protein binders from large protein libraries for therapeutic use. The protein library is displayed on the surface of bacteriophages which are amplified using bacteria, preferably Escherichia coli, to enrich binders in several selection rounds. Traditionally, the so-called panning procedure during which the phages are incubated with the target protein, washed and eluted is done manually, limiting the throughput.
View Article and Find Full Text PDFNon-invasive radionuclide molecular visualization of human epidermal growth factor receptor type 2 (HER2) can provide stratification of patients for HER2-targeting therapy. This method can also enable monitoring of the response to such therapies, thereby making treatment personalized and more efficient. Clinical evaluation in a phase I study demonstrated that injections of two scaffold protein-based imaging probes, [Tc]Tc-(HE)-G3 and [Tc]Tc-ADAPT6, are safe, well-tolerated and cause a low level of radioactivity in healthy tissue.
View Article and Find Full Text PDFAlbumin-binding fusion partners are frequently used as a means for the half-life extension of small therapeutic molecules that would normally be cleared very rapidly from circulation. However, in applications where small size is key, fusion to an additional molecule can be disadvantageous. Albumin-derived affinity proteins (ADAPTs) are a new type of scaffold proteins based on one of the albumin-binding domains of streptococcal protein G, with engineered binding specificities against numerous targets.
View Article and Find Full Text PDFAlbumin binding domain-Derived Affinity ProTeins (ADAPTs) are small (5 kDa) engineered scaffold proteins that are promising targeting agents for radionuclide-based imaging. A recent clinical study has demonstrated that radiolabeled ADAPTs can efficiently visualize human epidermal growth factor receptor 2 (HER2) expression in breast cancer using SPECT imaging. However, the use of ADAPTs directly labeled with radiometals for targeted radionuclide therapy is limited by their high reabsorption and prolonged retention of activity in kidneys.
View Article and Find Full Text PDFRadionuclide molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression may help to stratify breast and gastroesophageal cancer patients for HER2-targeting therapies. Albumin-binding domain-derived affinity proteins (ADAPTs) are a new type of small (46-59 amino acids) protein useful as probes for molecular imaging. The aim of this first-in-humans study was to evaluate the biodistribution, dosimetry, and safety of the HER2-specific Tc-ADAPT6.
View Article and Find Full Text PDFThe human epidermal growth factor receptor 2 (HER2) is a clinically validated target for cancer therapy, and targeted therapies are often used in regimens for patients with a high HER2 expression level. Despite the success of current drugs, a number of patients succumb to their disease, which motivates development of novel drugs with other modes of action. We have previously shown that an albumin binding domain-derived affinity protein with specific affinity for HER2, ADAPT, can be used to deliver the highly cytotoxic protein domain PE25, a derivative of Pseudomonas exotoxin A, to HER2 overexpressing malignant cells, leading to potent and specific cell killing.
View Article and Find Full Text PDFFusion toxins consisting of an affinity protein fused to toxic polypeptides derived from Pseudomonas exotoxin A (ETA) are promising agents for targeted cancer therapy. In this study, we examined whether fusion toxins consisting of an albumin binding domain‑derived affinity protein (ADAPT) interacting with human epidermal growth factor receptor 2 (HER2), coupled to the ETA‑derived polypeptides PE38X8 or PE25, with or without an albumin binding domain (ABD) for half‑life extension, can be used for specific killing of HER2‑expressing cells. The fusion toxins could easily be expressed in a soluble form in Escherichia coli and purified to homogeneity.
View Article and Find Full Text PDFRadionuclide molecular imaging is a promising tool that becomes increasingly important as targeted cancer therapies are developed. To ensure an effective treatment, a molecular stratification of the cancer is a necessity. To accomplish this, visualization of cancer associated molecular abnormalities in vivo by molecular imaging is the method of choice.
View Article and Find Full Text PDFADAPTs are small engineered non-immunoglobulin scaffold proteins, which have demonstrated very promising features as vectors for radionuclide tumour targeting. Radionuclide imaging of human epidermal growth factor 2 (HER2) expression in vivo might be used for stratification of patients for HER2-targeting therapies. ADAPT6, which specifically binds to HER2, has earlier been shown to have very promising features for in vivo targeting of HER2 expressing tumours.
View Article and Find Full Text PDFNon-immunoglobulin scaffolds represent a proven group of small affinity proteins that can be engineered in vitro to similar affinity and potency as monoclonal antibodies. Several novel candidate biotherapeutics that exploit the potential advantages scaffold proteins hold over larger and more complex antibodies have been developed over the past decade. The ease of using small and robust binding proteins as flexible and modular building blocks has led to the development of a wide range of innovative approaches to combine them in various bi- and multispecific formats.
View Article and Find Full Text PDFEngineered scaffold affinity proteins are used in many biological applications with the aim of replacing natural antibodies. Although their very small sizes are beneficial for multivalent nanoparticle conjugation and efficient Förster resonance energy transfer (FRET), the application of engineered affinity proteins in such nanobiosensing formats has been largely neglected. Here, it is shown that very small (≈6.
View Article and Find Full Text PDFRadionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets.
View Article and Find Full Text PDFABD-Derived Affinity Proteins (ADAPTs) is a novel class of engineered scaffold proteins derived from an albumin-binding domain of protein G. The use of ADAPT6 derivatives as targeting moiety have provided excellent preclinical radionuclide imaging of human epidermal growth factor 2 (HER2) tumor xenografts. Previous studies have demonstrated that selection of nuclide and chelator for its conjugation has an appreciable effect on imaging properties of scaffold proteins.
View Article and Find Full Text PDFVisualization of cancer-associated alterations of molecular phenotype using radionuclide imaging is a noninvasive approach to stratifying patients for targeted therapies. The engineered albumin-binding domain-derived affinity protein (ADAPT) is a promising tracer for radionuclide molecular imaging because of its small size (6.5 kDa), which satisfies the precondition for efficient tumor penetration and rapid clearance.
View Article and Find Full Text PDFRadionuclide-imaging-based stratification of patients to targeted therapies makes cancer treatment more personalized and therefore more efficient. Albumin-binding domain derived affinity proteins (ADAPTs) constitute a novel group of imaging probes based on the scaffold of an albumin-binding domain (ABD). To evaluate how different compositions of the N-terminal sequence of ADAPTs influence their biodistribution, a series of human epidermal growth factor receptor type 2 (HER2)-binding ADAPT6 derivatives with different N-terminal sequences were created: GCHDANS (2), GC(HE)DANS (3), GCDEAVDANS (4), and GCVDANS(5).
View Article and Find Full Text PDFDuring the past decades, advances in protein engineering have resulted in the development of variousin vitroselection techniques (e.g. phage display) to facilitate discovery of new and improved proteins.
View Article and Find Full Text PDFEngineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides.
View Article and Find Full Text PDFSmall engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies.
View Article and Find Full Text PDF