Publications by authors named "Sarah Lambert-Langlais"

The uncontrolled growth of tumor can lead to the formation of area deprived in nutrients. Due to their high genetic instability, tumor cells can adapt and develop resistance to this pro-apoptotic environment. Among the resistance mechanisms, those involved in the resistance to long-term amino acid restriction are not elucidated.

View Article and Find Full Text PDF

It is well known that the GCN2 and mTORC1 signaling pathways are regulated by amino acids and share common functions, in particular the control of translation. The regulation of GCN2 activity by amino acid availability relies on the capacity of GCN2 to sense the increased levels of uncharged tRNAs upon amino acid scarcity. In contrast, despite recent progress in the understanding of the regulation of mTORC1 by amino acids, key aspects of this process remain unsolved.

View Article and Find Full Text PDF
Article Synopsis
  • mTORC1 is a key regulator of cell growth and metabolism, influenced by nutrient availability and growth factors, specifically amino acids like leucine.
  • The study found that mTORC1 activity does not consistently depend on the movement of mTOR to the lysosome, as leucine can activate mTORC1 without changing its lysosomal location.
  • Knock-down experiments with Rag-GTPases showed that leucine can stimulate mTORC1 signaling even when mTOR's lysosomal positioning is disrupted, suggesting a unique regulatory pathway for leucine compared to other amino acids.
View Article and Find Full Text PDF

Constitution of oxidative defense systems and, correspondingly, oxidative stress prevention are highly dependent on amino acid supply. In vitro, experiments have demonstrated that amino acid availability participates to the homeostasis of reactive oxygen species. However the molecular mechanisms involved in the maintenance of redox homeostasis responsive to circulating amino acid levels remain unclear.

View Article and Find Full Text PDF

Transient environmental influences, such as perinatal nutritional stress, may induce deleterious metabolic symptoms that last for the entire life of individuals, implying that epigenetic modifications play an important role in this process. We have investigated, in mice, the consequences of maternal undernutrition during gestation and lactation on DNA methylation and expression of the leptin gene, which plays a major regulatory role in coordinating nutritional state with many aspects of mammalian biology. We show that animals born to mothers fed a low-protein-diet (F1-LPD group) have a lower body weight/adiposity and exhibit a higher food intake than animals born to mothers fed a control diet (F1-CD group).

View Article and Find Full Text PDF

Purpose: Selection of a balanced diet has a determinant impact on human health. Individual food preferences involve socio-cultural as well as physiological factors and evolve during aging. In mammals, physiological mechanisms governing food choices appear to require the sensing of nutrient concentrations in diet.

View Article and Find Full Text PDF

In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines.

View Article and Find Full Text PDF

Carney complex (CNC) is an inherited neoplasia syndrome with endocrine overactivity. Its most frequent endocrine manifestation is primary pigmented nodular adrenocortical disease (PPNAD), a bilateral adrenocortical hyperplasia causing pituitary-independent Cushing's syndrome. Inactivating mutations in PRKAR1A, a gene encoding the type 1 alpha-regulatory subunit (R1alpha) of the cAMP-dependent protein kinase (PKA) have been found in 80% of CNC patients with Cushing's syndrome.

View Article and Find Full Text PDF

In mammals, metabolic adaptations are required to cope with episodes of protein deprivation and malnutrition. Consequently, mammals have to adjust physiological functions involved in the adaptation to amino acid availability. Part of this regulation involves the modulation of the expression of numerous genes.

View Article and Find Full Text PDF

Adrenocortical carcinoma is a rare but aggressive cancer with unknown aetiology. Constitutive activation of beta-catenin is the most frequent alteration in benign and malignant adrenocortical tumours in patients. Here, we show that constitutive activation of beta-catenin in the adrenal cortex of transgenic mice resulted in progressive steroidogenic and undifferentiated spindle-shaped cells hyperplasia as well as dysplasia of the cortex and medulla.

View Article and Find Full Text PDF

Prostaglandin F(2alpha) (PGF(2alpha)), represses ovarian steroidogenesis and initiates parturition in mammals but its impact on adrenal gland is unknown. Prostaglandins biosynthesis depends on the sequential action of upstream cyclooxygenases (COX) and terminal synthases but no PGF(2alpha) synthases (PGFS) were functionally identified in mammalian cells. In vitro, the most efficient mammalian PGFS belong to aldo-keto reductase 1B (AKR1B) family.

View Article and Find Full Text PDF

The Cre-loxP system combined with gene targeting strategies has proven to be very useful for gene inactivation in specific tissues and/or cell types. To achieve adrenal cortex specific recombination in vivo, we used a 0.5-kb fragment of the 5'-flanking region of the akr1b7 gene to drive Cre expression in adrenocortical cells.

View Article and Find Full Text PDF