Publications by authors named "Sarah LaRocca"

Article Synopsis
  • * Results showed that stricter NPIs correlated with higher levels of anxiety and depressive symptoms, though the effect was quite small.
  • * Individual NPIs affected mental health differently based on gender and age, indicating the need for governments to consider mental health support when enforcing strict interventions.
View Article and Find Full Text PDF

Simultaneously tracking the global impact of COVID-19 is challenging because of regional variation in resources and reporting. Leveraging self-reported survey outcomes via an existing international social media network has the potential to provide standardized data streams to support monitoring and decision-making worldwide, in real time, and with limited local resources. The University of Maryland Global COVID-19 Trends and Impact Survey (UMD-CTIS), in partnership with Facebook, has invited daily cross-sectional samples from the social media platform's active users to participate in the survey since its launch on April 23, 2020.

View Article and Find Full Text PDF

The US COVID-19 Trends and Impact Survey (CTIS) is a large, cross-sectional, internet-based survey that has operated continuously since April 6, 2020. By inviting a random sample of Facebook active users each day, CTIS collects information about COVID-19 symptoms, risks, mitigating behaviors, mental health, testing, vaccination, and other key priorities. The large scale of the survey-over 20 million responses in its first year of operation-allows tracking of trends over short timescales and allows comparisons at fine demographic and geographic detail.

View Article and Find Full Text PDF

Background: Guidelines and recommendations from public health authorities related to face masks have been essential in containing the COVID-19 pandemic. We assessed the prevalence and correlates of mask usage during the pandemic.

Methods: We examined a total of 13,723,810 responses to a daily cross-sectional online survey in 38 countries of people who completed from April 23, 2020 to October 31, 2020 and reported having been in public at least once during the last 7 days.

View Article and Find Full Text PDF

Critical infrastructure systems must be both robust and resilient in order to ensure the functioning of society. To improve the performance of such systems, we often use risk and vulnerability analysis to find and address system weaknesses. A critical component of such analyses is the ability to accurately determine the negative consequences of various types of failures in the system.

View Article and Find Full Text PDF

Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure.

View Article and Find Full Text PDF