Publications by authors named "Sarah LaPotin"

Background: Uveal coloboma, a developmental eye defect, is caused by failed development of the optic fissure, a ventral structure in the optic stalk and cup where axons exit the eye and vasculature enters. The Hedgehog (Hh) signaling pathway regulates optic fissure development: loss-of-function mutations in the Hh receptor ptch2 produce overactive Hh signaling and can result in coloboma. We previously proposed a model where overactive Hh signaling disrupts optic fissure formation by upregulating transcriptional targets acting both cell- and non-cell-autonomously.

View Article and Find Full Text PDF
Article Synopsis
  • - During Hedgehog (Hh) signaling, the SMOOTHENED (SMO) receptor interacts with GLI transcription factors by blocking the activity of a key enzyme, protein kinase A (PKA-C).
  • - The study reveals that GPCR kinase 2 (GRK2) moves to the primary cilium upon SMO activation, leading to SMO phosphorylation and facilitating its direct interaction with PKA-C.
  • - This research highlights the essential role of GRK2 in Hh signaling, suggesting that GRKs may be important for direct interactions between GPCRs and other cellular proteins.
View Article and Find Full Text PDF

Background: Uveal coloboma, a developmental eye defect, is caused by failed development of the optic fissure, a ventral structure in the optic stalk and cup where axons exit the eye and vasculature enters. The Hedgehog (Hh) signaling pathway regulates optic fissure development: loss-of-function mutations in the Hh receptor produce overactive Hh signaling and can result in coloboma. We previously proposed a model where overactive Hh signaling disrupts optic fissure formation by upregulating transcriptional targets acting both cell- and non-cell-autonomously.

View Article and Find Full Text PDF

Leaf cutting ants of the genus Atta cultivate fungal gardens, carefully modifying environmental conditions to maintain optimal temperature for fungal growth. Antennal nerves from Atta are highly temperature sensitive, but the underlying molecular sensor is unknown. Here, we utilize Atta texana (Texas leaf cutter ant) to investigate the molecular basis of ant temperature sensation and how it might have evolved as the range expanded northeast across Texas from ancestral populations in Mexico.

View Article and Find Full Text PDF

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the vertebrate primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction.

View Article and Find Full Text PDF

South American and African weakly electric fish independently evolved electric organs from muscle. In both groups, a voltage-gated sodium channel gene independently lost expression from muscle and gained it in the electric organ, allowing the channel to become specialized for generating electric signals. It is unknown how this voltage-gated sodium channel gene is targeted to muscle in any vertebrate.

View Article and Find Full Text PDF