Publications by authors named "Sarah L Owen"

Objective: We present long-term follow-up results and analysis of stimulation sites of a prospective cohort study of six patients with chronic cluster headaches undergoing deep brain stimulation of the ipsilateral posterior hypothalamic region.

Methods: The primary endpoint was the postoperative change in the composite headache severity score "headache load" after 12 months of chronic stimulation. Secondary endpoints were the changes in headache attack frequency, headache attack duration and headache intensity, quality of life measures at 12, 24, and 48 months following surgery.

View Article and Find Full Text PDF

Unlabelled: The traditionally accepted form of training is direct supervision by an expert; however, modern trends in medicine have made this progressively more difficult to achieve. A 3-dimensional printer makes it possible to convert patients imaging data into accurate models, thus allowing the possibility to reproduce models with pathology. This enables a large number of trainees to be trained simultaneously using realistic models simulating actual neurosurgical procedures.

View Article and Find Full Text PDF

The advent of multimaterial 3D printers allows the creation of neurosurgical models of a more realistic nature, mimicking real tissues. The authors used the latest generation of 3D printer to create a model, with an inbuilt pathological entity, of varying consistency and density. Using this model the authors were able to take trainees through the basic steps, from navigation and planning of skin flap to performing initial steps in a craniotomy and simple tumor excision.

View Article and Find Full Text PDF

Background: Somatosensory homunculi have been demonstrated in primary somatosensory cortex and ventral posterior thalamus but not periaqueductal and periventricular grey matter (PAVG), a therapeutic target for deep brain stimulation (DBS) in chronic pain.

Aims: The study is an investigation of somatotopic representation in PAVG and assessment for a somatosensory homunculus.

Methods: Five human subjects were investigated using electrical somatosensory stimulation and deep brain macroelectrode recording.

View Article and Find Full Text PDF

Background: Targeting of the motor thalamus for the treatment of tremor has traditionally been achieved by a combination of anatomical atlases and neuroimaging, intraoperative clinical assessment, and physiological recordings.

Objective: To evaluate whether thalamic nuclei targeted in tremor surgery could be identified by virtue of their differing connections with noninvasive neuroimaging, thereby providing an extra factor to aid successful targeting.

Methods: Diffusion tensor tractography was performed in 17 healthy control subjects using diffusion data acquired at 1.

View Article and Find Full Text PDF

The remarkable efficacy of deep brain stimulation (DBS) for a range of treatment-resistant disorders is still not matched by a comparable understanding of the underlying neural mechanisms. Some progress has been made using translational research with a range of neuroscientific techniques, and here we review the most promising emerging principles. On balance, DBS appears to work by restoring normal oscillatory activity between a network of key brain regions.

View Article and Find Full Text PDF

Infection in the context of implant surgery is a dreaded complication, usually necessitating the removal of all affected hardware. Severe dystonia is a debilitating condition that can present as an emergency and can occasionally be life threatening. The authors present 2 cases of severe dystonia in which deep brain stimulation was maintained despite the presence of infection, using ongoing stimulation by externalization of electrode wires and an extracorporeal pulse generator.

View Article and Find Full Text PDF

Cluster headache is a severely debilitating disorder that can remain unrelieved by current pharmacotherapy. Alongside ablative neurosurgical procedures, neuromodulatory treatments of deep brain stimulation (DBS) and occipital nerve simulation have emerged in the last few years as effective treatments for medically refractory cluster headaches. Pioneers in the field have sought to publish guidelines for neurosurgical treatment; however, only small case series with limited long-term follow-up have been published.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) has shown remarkable therapeutic benefits for patients with otherwise treatment-resistant movement and affective disorders. This technique is not only clinically useful, but it can also provide new insights into fundamental brain functions through direct manipulation of both local and distributed brain networks in many different species. In particular, DBS can be used in conjunction with non-invasive neuroimaging methods such as magnetoencephalography to map the fundamental mechanisms of normal and abnormal oscillatory synchronization that underlie human brain function.

View Article and Find Full Text PDF

Deep brain stimulation has shown remarkable potential in alleviating otherwise treatment-resistant chronic pain, but little is currently known about the underlying neural mechanisms. Here for the first time, we used noninvasive neuroimaging by magnetoencephalography to map changes in neural activity induced by deep brain stimulation in a patient with severe phantom limb pain. When the stimulator was turned off, the patient reported significant increases in subjective pain.

View Article and Find Full Text PDF

For almost one hundred years, the exact role of human brain structures controlling the cardiorespiratory response to exercise ('central command') has been sought. Animal experiments and functional imaging studies have provided clues, but the underlying electrophysiological activity of proposed relevant neural sites in humans has never been measured. In this study, local field potentials were directly recorded in a number of 'deep' brain nuclei during an exercise task designed to dissociate the exercise from peripheral feedback mechanisms.

View Article and Find Full Text PDF

Objective: Electrical stimulation of the midbrain is known to influence blood pressure in animals. In humans, it is used for the treatment of chronic neuropathic pain. Our aim was to assess whether orthostatic hypotension can be successfully treated with deep brain stimulation of the periventricular/periaqueductal gray areas in humans.

View Article and Find Full Text PDF

Objectives.  To determine whether deep brain stimulation is an effective treatment for neuropathic pain of varied etiology. Material and Methods.

View Article and Find Full Text PDF

The periaqueductal grey matter is known to play a role in cardiovascular control in animals. Cardiovascular responses to electrical stimulation of the periventricular/periaqueductal grey matter were measured in 15 awake human study participants following implantation of deep brain stimulating electrodes for treatment of chronic pain. We found that stimulation of the ventral periventricular/periaqueductal grey matter caused a mean reduction in systolic blood pressure of 14.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) has been used to treat intractable pain for over 50 years. Variations in targets and surgical technique complicate the interpretation of many studies. To better understand its efficacy, we performed a meta-analysis of DBS for pain relief.

View Article and Find Full Text PDF

Deep brain stimulation (DBS) is an expanding field within neurosurgery. With many neurosurgeons performing relatively small numbers of these procedures, detailed descriptions of the technical aspects and nuances of DBS may be worthwhile. We describe our technique for DBS, based on over 300 procedures.

View Article and Find Full Text PDF