Publications by authors named "Sarah L Myers"

To investigate T helper type 17 (Th17) cells in the setting of acute kidney injury, the gene encoding the master regulator of Th17 cell differentiation, that is, RAR-related orphan receptor-γ (RORγT), was mutated in Lewis rats using CRISPR/Cas9 technology. In response to 40 min of bilateral renal ischemia-reperfusion (I/R), RAR-related orphan receptor C () rats were resistant to injury relative to wild-type rats. This protection was associated with inhibition of IL-17 expression and reduced infiltration of CD4 cells, CD8 cells, B cells, and macrophages.

View Article and Find Full Text PDF

Context:   Professional commitment, or one's affinity and loyalty to a career, has become a topic of interest in athletic training. The expanding research on the topic, however, has omitted newly credentialed athletic trainers (ATs). For an impressionable group of practitioners, transitioning to clinical practice can be stressful.

View Article and Find Full Text PDF

The protein beta(2)-microglobulin (beta(2)m) aggregates to form classical amyloid fibrils in patients undergoing long-term haemodialysis. Amyloid-like fibrils with a cross-beta fold can also be formed from wild-type beta(2)m under acidic conditions in vitro. The morphology of such fibrils depends critically on the conditions used: incubation of beta(2)m in low ionic strength buffers at pH 2.

View Article and Find Full Text PDF

The atomic force microscope (AFM) is a versatile instrument that can be used to image biological samples at nanometre resolution as well as to measure inter and intra-molecular forces in air and liquid environments. This review summarises the use of AFM applied to protein and peptide self-assembly systems involved in amyloid formation. The technical principles of the AFM are outlined and its advantages and disadvantages are highlighted and discussed in the context of the rapidly developing field of amyloid research.

View Article and Find Full Text PDF

Beta(2)-microglobulin (beta(2)m) forms amyloid fibrils that deposit in the musculo-skeletal system in patients undergoing long-term hemodialysis. How beta(2)m self-assembles in vivo is not understood, since the monomeric wild-type protein is incapable of forming fibrils in isolation in vitro at neutral pH, while elongation of fibril-seeds made from recombinant protein has only been achieved at low pH or at neutral pH in the presence of detergents or cosolvents. Here we describe a systematic study of the effect of 11 physiologically relevant factors on beta(2)m fibrillogenesis at pH 7.

View Article and Find Full Text PDF

The kinetics of spontaneous assembly of amyloid fibrils of wild-type beta(2)-microglobulin (beta(2)M) in vitro, under acid conditions (pH 2.5) and low ionic strength, has been followed using thioflavin-T (ThT) binding. In parallel experiments, the morphology of the different fibrillar species present at different time-points during the growth process were characterised using tapping-mode atomic force microscopy (TM-AFM) in air and negative stain electron microscopy (EM).

View Article and Find Full Text PDF