Thrombin is a potent platelet activator, acting through proteinase-activated receptors -1 and -4 (PAR1 and PAR4). Of these, PAR-1 is activated more rapidly and by lower thrombin concentrations. Consequently, PAR-1 has been extensively investigated as a target for anti-platelet drugs to prevent myocardial infarction.
View Article and Find Full Text PDFBackground: During thrombosis, procoagulant platelets expose phosphatidylserine (PS), which enhances local thrombin generation. Reducing platelet PS exposure could be a novel anti-thrombotic approach. PS is confined to the inner leaflet of the plasma membrane in unstimulated platelets by ATP-dependent "flippase" activity.
View Article and Find Full Text PDFArterial thrombosis triggers myocardial infarction and is a leading cause of death worldwide. Procoagulant platelets, a subpopulation of activated platelets that expose phosphatidylserine (PS), promote coagulation and occlusive thrombosis. Procoagulant platelets may therefore be a therapeutic target.
View Article and Find Full Text PDFSummaryPlatelets are the major cellular contributor to arterial thrombosis. However, activated platelets form two distinct subpopulations during thrombosis. Pro-aggregatory platelets aggregate to form the main body of the thrombus.
View Article and Find Full Text PDFBackground And Purpose: Ethaninidothioic acid (R5421) has been used as a scramblase inhibitor to determine the role of phospholipid scrambling across a range of systems including platelet procoagulant activity. The selectivity of R5421 has not been thoroughly studied. Here, we characterised the effects of R5421 on platelet function and its suitability for use as a scramblase inhibitor.
View Article and Find Full Text PDFProcoagulant platelets promote thrombin generation during thrombosis. Platelets become procoagulant in an all-or-nothing manner. We investigated how distinct Ca2+ signaling between platelet subpopulations commits some platelets to become procoagulant, using the high-affinity Ca2+ indicator Fluo-4, which may become saturated during platelet stimulation, or low-affinity Fluo-5N, which reports only very high cytosolic Ca2+ concentrations.
View Article and Find Full Text PDFPlatelet activation plays a key role in normal haemostasis and pathological thrombosis. Platelet activation is rapid; within minutes of stimulation, platelets generate bioactive phospholipids, secrete their granule contents, activate integrins and aggregate together to form a haemostatic plug. These events are dependent on ATP synthesis.
View Article and Find Full Text PDF