Publications by authors named "Sarah L Long"

Bile salt hydrolases (BSHs) are currently being investigated as target enzymes for metabolic regulators in humans and as growth promoters in farm animals. Understanding structural features underlying substrate specificity is necessary for inhibitor design. Here, we used a multidisciplinary workflow including mass spectrometry, mutagenesis, molecular dynamic simulations, machine learning, and crystallography to demonstrate substrate specificity in Lactobacillus salivarius BSH, the most abundant enzyme in human and farm animal intestines.

View Article and Find Full Text PDF

Lactic acid bacterium, Lactobacillus plantarum, has been applied, for centuries, for food and drink fermentations. Given the benefits associated with fermented products, Lb. plantarum strains have captured considerable industrial and scientific interest, so that they are included as fundamental components of functional foods.

View Article and Find Full Text PDF

Gut microbial enzymes, bile salt hydrolases (BSHs) are the gateway enzymes for bile acid (BA) modification in the gut. This activity is a promising target for developing innovative non-antibiotic growth promoters to enhance animal production and health. Compelling evidence has shown that inhibition of BSH activity should enhance weight gain by altering the BA pool, host signalling and lipid metabolism.

View Article and Find Full Text PDF

Bile acid (BA) signatures are altered in many disease states. BA metabolism is an important microbial function to assist gut colonization and persistence, as well as microbial survival during gastro intestinal (GI) transit and it is an important criteria for potential probiotic bacteria. Microbes that express bile salt hydrolase (BSH), gateway BA modifying enzymes, are considered to have an advantage in the gut.

View Article and Find Full Text PDF

Background: Lactobacillus mucosae DPC 6426 has previously demonstrated potentially cardio-protective properties, in the form of dyslipidaemia and hypercholesterolemia correction in an apolipoprotein-E deficient mouse model. This study aims to characterise the manner in which this microbe may modulate host bile pool composition and immune response, in the context of cardiovascular disease. Lactobacillus mucosae DPC 6426 was assessed for bile salt hydrolase activity and specificity.

View Article and Find Full Text PDF

Bile acids are synthesized from cholesterol in the liver and released into the intestine to aid the digestion of dietary lipids. The host enzymes that contribute to bile acid synthesis in the liver and the regulatory pathways that influence the composition of the total bile acid pool in the host have been well established. In addition, the gut microbiota provides unique contributions to the diversity of bile acids in the bile acid pool.

View Article and Find Full Text PDF