Whole knee joint MR image datasets were used to compare the performance of geometric trabecular bone features and advanced machine learning techniques in predicting biomechanical strength properties measured on the corresponding ex vivo specimens. Changes of trabecular bone structure throughout the proximal tibia are indicative of several musculoskeletal disorders involving changes in the bone quality and the surrounding soft tissue. Recent studies have shown that MR imaging also allows non-invasive 3-D characterization of bone microstructure.
View Article and Find Full Text PDFTrabecular bone density changes throughout the proximal tibia are indicative of several musculoskeletal disorders of the knee joint. Many of these disorders involve not only changes in the amount of bone, but also in the surrounding soft tissue. Osteoarthritis, for instance, involves bone density changes below the subchondral bone and throughout the proximal tibia, along with degradation evident in the articular cartilage.
View Article and Find Full Text PDFThe purpose of this study was to clarify meniscal displacement and cartilage-meniscus contact behavior in a full extension position and a deep knee flexion position. We also studied whether the meniscal translation pattern correlated with the tibiofemoral cartilage contact kinematics. Magnetic resonance (MR) images were acquired at both positions for 10 subjects using a conventional MR scanner.
View Article and Find Full Text PDFPurpose: The ability of a baseball infielder to respond to a batted ball may provide the best defense for avoiding injury. This study investigated the response times of young athletes performing a simulated baseball-fielding task to estimate the maximum velocity with which a baseball can leave the bat and allow a player, standing 13.7 m away, to safely respond to the approaching ball.
View Article and Find Full Text PDF