Poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) diblock copolymer nanoparticles were synthesized via polymerization-induced self-assembly (PISA) using reversible addition-fragmentation chain-transfer (RAFT) aqueous emulsion polymerization in D2O. Such PISA syntheses produce sterically-stabilized nanoparticles in situ and can be performed at relatively high copolymer concentrations (up to 50 wt%). This PGMA-PBzMA formulation is known to form only spherical nanoparticles in water using aqueous emulsion polymerization (Macromolecules, 2014, 47, 5613-5623), which makes it an ideal model system for exploring new characterization methods.
View Article and Find Full Text PDFPolymerization-induced self-assembly (PISA) is used for the highly convenient and efficient preparation of ampholytic diblock copolymer nanoparticles directly in acidic aqueous solution. Cationic nanoparticles comprising a protonated polyamine stabilizer block and a hydrophobic polyacid core-forming block are formed at pH 2. Micelle inversion occurs at pH 10 to produce anionic nanoparticles with an ionized polyacid stabilizer block and a hydrophobic polyamine core-forming block.
View Article and Find Full Text PDFRecently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks.
View Article and Find Full Text PDF