Neurons, astrocytes and oligodendrocytes locally regulate protein translation within distal processes. Here, we tested whether there is regulated local translation within peripheral microglial processes (PeMPs) from mouse brain. We show that PeMPs contain ribosomes that engage in de novo protein synthesis, and these are associated with transcripts involved in pathogen defense, motility and phagocytosis.
View Article and Find Full Text PDFWithin eukaryotic cells, translation is regulated independent of transcription, enabling nuanced, localized, and rapid responses to stimuli. Neurons respond transcriptionally and translationally to synaptic activity. Although transcriptional responses are documented in astrocytes, here we test whether astrocytes have programmed translational responses.
View Article and Find Full Text PDFThe first evidence of local translation in the CNS appeared nearly 40 years ago, when electron microscopic studies showed polyribosomes localized to the base of dendritic spines. Since then, local translation has been established as an important regulatory mechanism for gene expression in polarized or functionally compartmentalized cells. While much attention has been placed on characterizing the local transcriptome and regulatory "grammar" directing mRNA localization in neurons and glia, less is understood about how these cells subsequently de-repress mRNA translation in their peripheral processes to produce a rapid translational response to stimuli.
View Article and Find Full Text PDFThe catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na-binding site is in equilibrium between open (N) and closed (N) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity.
View Article and Find Full Text PDFThe conformational properties of trypsin-like proteases and their zymogen forms remain controversial because of a lack of sufficient information on their free forms. Specifically, it is unclear whether the free protease is zymogen-like and shifts to its mature form upon a ligand-induced fit or exists in multiple conformations in equilibrium from which the ligand selects the optimal fit via conformational selection. Here we report the results of F NMR measurements that reveal the conformational properties of a protease and its zymogen precursor in the free form.
View Article and Find Full Text PDFActivity in trypsin-like proteases is the result of proteolytic cleavage at R15 followed by an ionic interaction that ensues between the new N terminus of I16 and the side chain of the highly conserved D194. This mechanism of activation, first proposed by Huber and Bode, organizes the oxyanion hole and primary specificity pocket for substrate binding and catalysis. Using the clotting protease thrombin as a relevant model, we unravel contributions of the I16-D194 ionic interaction to Na binding, stability of the transition state and the allosteric E*-E equilibrium of the trypsin fold.
View Article and Find Full Text PDFA pre-existing, allosteric equilibrium between closed (E*) and open (E) conformations of the active site influences the level of activity in the trypsin fold and defines ligand binding according to the mechanism of conformational selection. Using the clotting protease thrombin as a model system, we investigate the molecular determinants of the E*-E equilibrium through rapid kinetics and X-ray structural biology. The equilibrium is controlled by three residues positioned around the active site.
View Article and Find Full Text PDF