Behav Brain Res
November 2016
Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits.
View Article and Find Full Text PDFThe p38α to p38δ mitogen-activated protein kinases (MAPKs) are central regulatory nodes coordinating acute stress and inflammatory responses. Their activation leads to rapid adjustment of protein synthesis, for instance translational induction of proinflammatory cytokines. The only known direct link of p38 to translation machinery is the MAPK signal-integrating kinase Mnk.
View Article and Find Full Text PDFA dependence of poliovirus on an unorthodox translation initiation mode can be targeted selectively to drive viral protein synthesis and cytotoxicity in malignant cells. Transformed cells are naturally susceptible to poliovirus, due to widespread ectopic upregulation of the poliovirus receptor, Necl-5, in ectodermal/neuroectodermal cancers. Viral tumor cell killing and the host immunologic response it engenders produce potent, lasting antineoplastic effects in animal tumor models.
View Article and Find Full Text PDFProtein localization is tightly linked with function, such that the subcellular distribution of a protein serves as an important control point regulating activity. Exploiting this regulatory mechanism, we present here a general approach by which protein location, and hence function, may be controlled on demand in the budding yeast. In this system a small molecule, rapamycin, is used to temporarily recruit a strong cellular address signal to the target protein, placing subcellular localization under control of the selective chemical stimulus.
View Article and Find Full Text PDFThe subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling modules, wherein yeast cells form interconnected and elongated chains.
View Article and Find Full Text PDFUnder conditions of nitrogen stress, the budding yeast S. cerevisiae initiates a cellular response involving the activation of autophagy, an intracellular catabolic process for the degradation and recycling of proteins and organelles. In certain strains of yeast, nitrogen stress also drives a striking developmental transition to a filamentous form of growth, in which cells remain physically connected after cytokinesis.
View Article and Find Full Text PDF