Publications by authors named "Sarah Jane O White"

Critical minerals (or critical elements) are minerals or elements that are essential to global security and development and have supply chains vulnerable to disruption. In general, knowledge of the environmental behavior and health effects of critical elements is needed to support the development of safe and environmentally responsible supplies. This knowledge includes identifying potential consequences of increased critical element production and use, alternative critical element sources such as mine wastes, and adverse effects of critical elements on ecosystem condition and organismal health.

View Article and Find Full Text PDF

Emerging and low-carbon technologies and innovations are driving a need for domestic sources, sustainable use, and availability of critical minerals (CMs)-those vital to the national and economic security of the United States. Understanding the known and potential health effects of exposures to such mineral commodities can inform prudent and environmentally responsible handling and harvesting. We review the occurrence, use, predominant exposure pathways, and adverse outcome pathways (AOP) for human and fish receptors of those CMs that are nutritionally essential trace metals (specifically, cobalt, chromium, manganese, nickel, and zinc), as well as the rare earth elements.

View Article and Find Full Text PDF

Indium is critical to the global economy and is used in an increasing number of electronics and new energy technologies. However, little is known about its environmental behavior or impacts, including its concentrations or cycling in the atmosphere. This study determined indium concentrations in air particulate matter at five locations across the northeastern United States over the course of one year, in 1995.

View Article and Find Full Text PDF

The rapid growth of new electronics and energy technologies requires the use of rare elements of the periodic table. For many of these elements, little is known about their environmental behavior or human health impacts. This is true for indium and gallium, two technology critical elements.

View Article and Find Full Text PDF
Article Synopsis
  • Indium is a metal increasingly used in electronics and energy technologies, but its environmental behavior, particularly from mining, is not well understood.
  • The study focuses on Mineral Creek in Colorado, where heavy metal contamination has altered the water chemistry, revealing high indium levels that change significantly with pH adjustments.
  • Laboratory experiments indicate that indium can switch from a dissolved state to a solid phase when pH increases, highlighting the environmental impact of nonferrous mining on indium mobility.
View Article and Find Full Text PDF

The metal indium is an example of an increasingly important material used in electronics and new energy technologies, whose environmental behavior and toxicity are poorly understood despite increasing evidence of detrimental health impacts and human-induced releases to the environment. In the present work, the history of indium deposition from the atmosphere is reconstructed from its depositional record in an ombrotrophic bog in Massachusetts. A novel freeze-coring technique is used to overcome coring difficulties posed by woody roots and peat compressibility, enabling retrieval of relatively undisturbed peat cores dating back more than a century.

View Article and Find Full Text PDF