Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers.
View Article and Find Full Text PDFCurrent genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents.
View Article and Find Full Text PDFCalreticulin transacetylase (CRTAase) is known to catalyze the transfer of acetyl group from polyphenolic acetates (PA) to certain receptor proteins (RP), thus modulating their activity. Herein, we studied for the first time the substrate specificity of CRTAase towards N-acetylamino derivatives of coumarins and quinolones. This study is endowed with antiplatelet action by virtue of causing CRTAase catalyzed activation of platelet Nitric Oxide Synthase (NOS) by way of acetylation leading to the inhibition of ADP/Arachidonic acid (AA)-dependent platelet aggregation.
View Article and Find Full Text PDFOur earlier investigations culminated in the discovery of a unique membrane-bound enzyme Calreticulin transacetylase (CRTAase) in mammalian cells catalyzing the transfer of acetyl group from polyphenolic acetates (PAs) to certain functional proteins viz. Glutathione S-transferase (GST), NADPH Cytochrome c reductase and Nitric oxide synthase (NOS) resulting in the modulation of their biological activities. In order to develop SAR study, herein, we studied the influence of alkyl group at C-3 position of acetoxy coumarins on the CRTAase activity.
View Article and Find Full Text PDFCalreticulin Transacetylase (CRTAase) catalyzes the transfer of acetyl group(s) from polyphenolic acetates (PAs) to functional proteins, such as Glutathione S-transferase (GST), NADPH Cytochrome c reductase and Nitric Oxide Synthase (NOS) resulting in the modulation of biological activities. A comparison of the specificities of the acetoxy derivatives of coumarins, biscoumarins, chromones, flavones, isoflavones and xanthones has been carried out earlier by us with an aim to study the effect of nature and position of the acetoxy groups on the benzenoid ring and the position of the carbonyl group with respect to oxygen/nitrogen heteroatom for the catalytic activity of CRTAase. In this communication for the first time, we have studied the influence of differently substituted benzofurans on the CRTAase activity to study the effect of the replacement of pyran ring of coumarin with furan ring, presence of carbonyl at C-3, substitution of C-3 carbonyl group with acetoxy group and presence of various substituents (OAc/OH/Cl) on the benzenoid ring.
View Article and Find Full Text PDF