Temperate heathlands and blanket bogs are globally rare and face growing wildfire threats. Ecosystem impacts differ between low and high severity fires, where severity reflects immediate fuel consumption. This study assessed factors influencing fire severity in Scottish heathlands and blanket bogs, including the efficacy of the Canadian Fire Weather Index System (CFWIS).
View Article and Find Full Text PDFSoil carbon (C) pools and plant community composition are regulated by nitrogen (N) and phosphorus (P) availability. Atmospheric N deposition impacts ecosystem C storage, but the direction of response varies between systems. Phosphorus limitation may constrain C storage response to N, hence P application to increase plant productivity and thus C sequestration has been suggested.
View Article and Find Full Text PDFGlobally accelerating trends in societal development and human environmental impacts since the mid-twentieth century are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents.
View Article and Find Full Text PDFEcosystem carbon (C) accrual and storage can be enhanced by removing large herbivores as well as by the fertilizing effect of atmospheric nitrogen (N) deposition. These drivers are unlikely to operate independently, yet their combined effect on aboveground and belowground C storage remains largely unexplored. We sampled inside and outside 19 upland grazing exclosures, established for up to 80 years, across an N deposition gradient (5-24 kg N ha(-1) yr(-1) ) and found that herbivore removal increased aboveground plant C stocks, particularly in moss, shrubs and litter.
View Article and Find Full Text PDFArctic ecosystems are strongly nutrient limited and exhibit dramatic responses to nitrogen (N) enrichment, the reversibility of which is unknown. This study uniquely assesses the potential for tundra heath to recover from N deposition and the influence of phosphorus (P) availability on recovery. We revisited an experiment in Svalbard, established in 1991, in which N was applied at rates representing atmospheric N deposition in Europe (10 and 50 kg N ha(-1) yr(-1) ; 'low' and 'high', respectively) for 3-8 yr.
View Article and Find Full Text PDFIt has been shown in many habitats worldwide, that a shift in vegetation composition between woody shrub and graminoid dominance can influence carbon (C) cycling. Due to land management practices and environmental change, UK upland heath vegetation has historically undergone shifts in dominance from the woody dwarf shrub Calluna vulgaris (Calluna) to species poor graminoid swards. The consequences of this for C sequestration are unknown.
View Article and Find Full Text PDFRoot litter is the dominant soil carbon and nutrient input in many ecosystems, yet few studies have considered how root decomposition is regulated at the landscape scale and how this is mediated by land-use management practices. Large herbivores can potentially influence below-ground decomposition through changes in soil microclimate (temperature and moisture) and changes in plant species composition (root traits). To investigate such herbivore-induced changes, we quantified annual root decomposition of upland grassland species in situ across a landscape-scale livestock grazing experiment, in a common-garden experiment and in laboratory microcosms evaluating the influence of key root traits on decomposition.
View Article and Find Full Text PDFPremise Of The Study: Microsatellite markers were developed for the hemiparasitic plant Melampyrum sylvaticum to investigate the breeding system, genetic diversity, and structure of populations in the United Kingdom, Sweden, and Norway.
Methods And Results: Microsatellites were isolated from genomic DNA using an enrichment protocol. Twenty-nine loci were characterized in two individuals from each of 15 geographically disparate populations ("global").
Our understanding of positive and negative plant interactions is primarily based on vascular plants, as is the prediction that facilitative effects dominate in harsh environments. It remains unclear whether this understanding is also applicable to moss-vascular plant interactions, which are likely to be influential in low-temperature environments with extensive moss ground cover such as boreal forest and arctic tundra. In a field experiment in high-arctic tundra, we investigated positive and negative impacts of the moss layer on vascular plants.
View Article and Find Full Text PDFThe carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO and CH fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese () for ca. 20 years.
View Article and Find Full Text PDFThe potential of alpine moss-sedge heath to recover from elevated nitrogen (N) deposition was assessed by transplanting Racomitrium lanuginosum shoots and vegetation turfs between 10 elevated N deposition sites (8.2-32.9 kg ha(-1) yr(-1)) and a low N deposition site, Ben Wyvis (7.
View Article and Find Full Text PDFHerbivory and climate are key environmental drivers, shaping ecosystems at high latitudes. Here, we focus on how these two drivers act in concert, influencing the high arctic tundra. We aim to investigate mechanisms through which herbivory by geese influences vegetation and soil processes in tundra ecosystems under ambient and warmed conditions.
View Article and Find Full Text PDFHigh-latitude ecosystems store large amounts of carbon (C); however, the C storage of these ecosystems is under threat from both climate warming and increased levels of herbivory. In this study we examined the combined role of herbivores and climate warming as drivers of CO2 fluxes in two typical high-latitude habitats (mesic heath and wet meadow). We hypothesized that both herbivory and climate warming would reduce the C sink strength of Arctic tundra through their combined effects on plant biomass and gross ecosystem photosynthesis and on decomposition rates and the abiotic environment.
View Article and Find Full Text PDFThe effects of elevated CO2 (650 ppm) on interactions between a chlorophyllous parasitic angiosperm, Rhinanthus minor (L.) and a host, Poa pratensis (L.) were investigated.
View Article and Find Full Text PDFNative upland species, Nardus stricta, Eriophorum vaginatum, Erica cinerea and Vaccinium vitis-idaea were given 3 or 60 kg N ha yr , over 2 yr, applied as a mist (NH NO ). The high N treatment increased above-ground biomass in all four species, but only significantly in E. cinerea, E.
View Article and Find Full Text PDF